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Abstract
This study aims to evaluate the efficacy of simple linear, multiple, and robust

regression methods to predict fall-harvested alfalfa (Medicago sativa L.) yield using

unmanned aerial vehicle (UAV)-acquired multispectral and thermal images. Four

alfalfa fields in southern California were selected, and a composite dataset containing

180 ground truth sampling points was formed to build and test the performance of

the regression models. The UAV was flown in September 2020, 5–29 days before the

ground truth data collection. A total of nine crop indices, canopy temperature, and

the difference between canopy temperature and air temperature were used as input

predictors. Among the simple linear models, the model with normalized difference

vegetation index as input showed a strong performance (coefficient of determination

[R2] = 0.76; root mean square error [RMSE] = 170.29 kg ha−1; and mean absolute

error [MAE] = 132.18 kg ha−1). A multiple linear regression model with three input

predictors showed the highest accuracy with R2 = 0.83, RMSE = 142.99 kg ha−1,

and MAE = 109.30 kg ha−1. The top-performing models accurately estimated mean

yield at the field level and differentiated fields with low and high alfalfa productiv-

ity. Including canopy temperature-related inputs did not improve the yield prediction

power of the models. The error in the yield prediction increased as the days between

UAV flights and field harvest increased. Results here suggested that UAV-based

remote sensing has the potential to estimate fall-harvested alfalfa yield in southern

California.

Abbreviations: BIC, Bayesian information criterion; CWSI, crop water stress index; EVI, enhance vegetation index; GNDVI, green normalized difference
vegetation index; LM, linear model; MAE, mean absolute error; MLR, multiple linear regression; NDVI, normalized difference vegetation index; OSAVI,
optimized soil adjusted vegetation index; PSRI, plant senescence reflectance index; RMSE, root mean square error; RR, robust regression; RVI, ratio
vegetation index; SAVI, soil adjusted vegetation index; SIPI, structure insensitive pigment index; UAV, unmanned aerial vehicle.
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1 INTRODUCTION

Predicting crop yield before harvest is important to make
an informed decision on import and export, evaluate the
national food security status, and develop profitable market
plans (Horie et al., 1992). Crop producers would also be able
to apply site-specific variable rates of agricultural inputs if
they could know the within and between fields yield variabil-
ity (Haghverdi et al., 2015; Penney et al., 1996). Additionally,
rapid and timely yield estimations can help inform planning
of harvest relative to farm labor, equipment, crop market
demands, and environmental conditions.

Alfalfa (Medicago sativa L.) is a major perennial forage
crop well-known for its high dry matter yield, nutritional qual-
ity, and palatability (Higginbotham et al., 2008; Sapkota et al.,
2019). In the United States, it was the fourth most widely
grown crop with an approximate production of 50 million Mg
of alfalfa and alfalfa mixtures from over 6.8 million ha of har-
vested area in 2019 (USDA-NASS, 2020). California leads the
nation in alfalfa hay production (CDFA, 2020). Dairy cattle
are a significant consumer of alfalfa hay, accounting for up to
75–80% of total utilization (Higginbotham et al., 2008). Since
alfalfa is a primary source of feedstock, a decrease in its pro-
duction rate can be of significant concern. It may even cause
forage scarcity for dairy cattle. Therefore, early estimation of
alfalfa production can help growers plan for site-specific agri-
cultural management, and investors, consulting agencies, and
policymakers prepare beforehand for the import and export
of the hay depending upon the yield prediction (Feng et al.,
2020).

Destructive sampling and plant maturity assessment are
traditional ways of estimating alfalfa yield (Noland et al.,
2018). Nevertheless, these methods are demanding, time con-
suming (Feng et al., 2020; Noland et al., 2018), and may
not be accurate for large fields with spatial heterogeneity.
An alternative new approach for yield estimation is remote
sensing via unmanned aerial vehicles (UAVs), which is gain-
ing popularity because of its ease of use and potential for
rapid measurements from the field to the regional scale.
UAV-mounted multispectral cameras can be used to obtain a
wide range of vegetation indices to evaluate vegetation cover,
growth, and vigor and estimate crop yield (Xue & Su, 2017).
In addition, UAV-mounted thermal cameras can be used to
derive indices like crop water stress index (CWSI) and the
difference between canopy temperature and air temperature
to detect water stress and estimate crop yield (Chandel et al.,
2021; Hattendorf et al., 1988; Kirkham et al., 1983; Zhang
et al., 2019). Therefore, selecting an appropriate vegetation
index is vital in crop yield estimation.

Estimation of crop yield using remotely sensed images
from UAVs and various satellite products has been well stud-
ied for cereals crops, including maize (Schwalbert et al.,

Core Ideas
∙ Yield predicting models developed here helped to

distinguish between-field variability.
∙ Multiple linear models showed better yield predict-

ing power than simple linear model.
∙ Among linear models, NDVI-based model pre-

dicted fall-harvested alfalfa dry matter yield with
greater accuracy.

2018), wheat (Segarra et al., 2020; Zhang et al., 2020), and
rice (Arumugam et al., 2021; Fernandez-Beltran et al., 2021;
Huang et al., 2013). In addition, several recent studies have
also used satellite or UAV-acquired remote sensing images to
develop alfalfa yield predicting models and reported promis-
ing results (Chandel et al., 2021; Dvorak et al., 2021; Feng
et al., 2020). However, UAV-based yield prediction methods
are region specific and are affected by various factors, includ-
ing landscapes, soil quality, and climatic conditions (Rashid
et al., 2021; Schwalbert et al., 2018), and no study has investi-
gated both within- and between-field alfalfa yield variability
using UAV-acquired multispectral and thermal images. Fur-
thermore, information on the impact of the time difference
between UAV flights and alfalfa field harvest on the per-
formance of statistical models is lacking in the literature.
Therefore, this study was conducted in the southern California
desert agricultural region to estimate the efficacy of UAV-
based multispectral and thermal imageries taken close to or
well ahead of the harvest for in-season alfalfa yield estima-
tion. The specific objective was to assess the performance of
crop indices and accuracy of statistical models to predict yield
from fall-harvested alfalfa.

2 MATERIALS AND METHODS

2.1 Study area

This study was conducted in four different commercial alfalfa
fields located in the Palo Verde region of southern California
(Figure 1). The minimum mean daily temperature for 2020
was approximately 6˚C while the maximum mean daily tem-
perature recorded was 40˚C, with a mean annual temperature
of 23˚C. Yearly total rainfall and reference evapotranspiration
recorded for the year 2020 was 83 and 1888 mm, respectively,
as recorded by the California Irrigation Management Infor-
mation System (CIMIS) weather station at Ripley, CA. The
soil texture, organic matter content, and pH information at
multiple depths for all four fields are presented in Table 1
(Montazar et al., 2020). The soil texture varied between the
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F I G U R E 1 At the top, map shows four different study areas and yield sampling points. At the bottom is a picture of DJI Matrice-100
unmanned aerial vehicle (UAV) with the Micasense Rededge and FLIR Duo® Pro R thermal cameras.

study sites. Field-1 mostly had loamy soil. At Field-2, the
soil was loamy in the shallow layer (0–0.6 m), while sandy
loam (0.6–0.9 m) or loamy sand (0.9–1.2 m) in the deeper
layers. Similarly, Field-3 had silt loam soil in the shallow (0–
0.6 m) and sandy soil in the deep layers (0.6–1.2 m). Field-4
mostly had sandy soil; however, it was sandy loam in the top-
soil layer (0–0.3 m). The soil pH for all the fields was close to
8.0 (7.9–8.4; Table 1).

2.2 Field data collection

A DJI Matrice 100 quadcopter (SZ DJI Technology Co., Ltd)
equipped with Micasense Red Edge multispectral (Micasense,

Inc.) and FLIR Duo Pro R thermal (Teledyne FLIR LLC.)
cameras (Figure 1) was flown over all four fields on Septem-
ber 26, 2020 on a sunny and cloud-free day ideal for image
acquisition. The multispectral camera had five-band sensors,
including blue (475 ± 10 nm), green (560 ± 10 nm), red
(668 ± 5 nm), red edge (717 ± 5 nm), and near-infrared
(840 ± 20 nm). The FLIR Duo Pro R had two lenses, includ-
ing thermal and visible. The thermal sensor resolution was
336 × 256, and the camera had an accuracy of ±5˚C. Images
obtained from the cameras were geotagged using the Micas-
ense and FLIR Duo Pro R UAV-mounted GPS sensors. In
addition, images of the Micasense standard white reflectance
panel were captured before each flight for the radiometric
calibration, following the recommended procedure by the
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T A B L E 1 Soil physiochemical properties of the study fields. Extracted from Montazar et al. (2020).

Experimental site Horizon (m)

Soil texture Organic
matter (%) pHSand (%) Clay (%) Silt (%)

Field-1 0–0.3 44.2 11.1 44.7 1.7 8.0

0.3–0.6 46.9 8.1 45.0 0.8 8.1

0.6–0.9 41.7 7.7 50.5 0.9 8.2

0.9–1.2 47.8 5.9 46.3 0.7 8.2

Field-2 0–0.3 39.7 20.6 39.7 2.3 8.1

0.3–0.6 50.1 11.9 37.9 0.7 8.0

0.6–0.9 75.0 5.1 19.9 0.9 8.2

0.9–1.2 83.7 4.1 12.2 0.8 8.2

Field-3 0–0.3 31.5 13.2 55.3 1.3 8.0

0.3–0.6 26.1 18.7 55.2 0.8 8.1

0.6–0.9 88.6 2.8 8.6 0.5 8.2

0.9–1.2 94.8 1.4 3.8 0.5 8.4

Field-4 0–0.3 69.3 13.1 17.6 1.7 7.9

0.3–0.6 91.9 2.8 5.3 0.8 8.2

0.6–0.9 82.0 8.3 9.7 1.2 8.1

0.9–1.2 85.9 5.7 8.4 0.9 8.3

T A B L E 2 Dates for unmanned aerial vehicle (UAV) image acquisition, alfalfa harvest (yield sampling), and the time interval between the flight
and harvest.

Sites Date of UAV flight Date of alfalfa harvest
Days between UAV
flight and harvest

Field-1 September 26, 2020 October 1, 2020 5

Field-2 September 26, 2020 October 6, 2020 10

Field-3 September 26, 2020 October 20, 2020 24

Field-4 September 26, 2020 October 25, 2020 29

manufacturer. The mission planning of the flight was config-
ured and implemented in a grid pattern using Pix4Dcapture
software (Pix4D S.A.) installed on an iPad mini (Apple Inc.).
The flight altitude was approximately 119 m above ground
level with the frontal- and side-overlapping of 70%.

Data from a total of 46, 35, 64, and 35 randomly selected
sampling plots (1.5 m × 2 m) for fields 1, 2, 3, and 4, respec-
tively, were used in this study. Hand harvesting of all fields
was done right before the growers harvested their fields and
within 1 month after the UAV data collection (Table 2) and
their locations were recorded using Trimble R2 GNSS GPS
sensor (Trimble Inc.). Plants were cut at 6–8 cm height, and
their fresh weights were recorded. Then, samples were trans-
ported to the laboratory and dried for 3 days in a conventional
oven at 60˚C to obtain alfalfa dry matter weight for each
sampling plot. These fields were part of ongoing on-farm irri-
gation research trials. Each field had been divided into three
large plots that received a different irrigation treatment rang-
ing from typical irrigation management by the growers to

multiple summer-deficit irrigation strategies. Montazar et al.
(2020) outlined more information regarding the irrigation
trials.

2.3 UAV image processing, model
development, and implementation

The UAV-acquired images were imported to the photogram-
metry software Pix4Dmapper (Version 4.6.4, Pix4D S.A.) for
further processing (Figure 2). First, orthomosaic of radio-
metrically calibrated images were created using multispectral
(blue, green, red, red edge, and near-infrared) and thermal
cameras for each field. Then, a total of nine indices, including
normalized difference vegetation index (NDVI; Rouse et al.,
1973), enhanced vegetation index (EVI; Huete et al., 2002),
green normalized difference vegetation index (GNDVI; Gitel-
son et al., 1996), optimized soil adjusted vegetation index
(OSAVI; Rondeaux et al., 1996), plant senescence reflectance
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T A B L E 3 Vegetation indices used in the study and their respective computation methods.

Vegetation index Equationa Reference
Normalized difference vegetation

index (NDVI)
NDVI = NIR−RED

NIR+RED
(Rouse et al., 1973)

Enhance vegetation index (EVI) EVI = 2.5∗(NIR−RED)
NIR+6∗RED−7.5∗BLUE+1

(Huete et al., 2002)

Green normalized difference
vegetation index (GNDVI)

GNDVI = NIR−GREEN
NIR+GREEN

(Gitelson et al., 1996)

Optimized soil adjusted
vegetation index (OSAVI)

OSAVI = NIR−RED
NIR+RED+0.16

(Rondeaux et al., 1996)

Plant senescence reflectance
index (PSRI)

PSRI = RED−GREEN
NIR

(Merzlyak et al., 1999)

Ratio vegetation index (RVI) RVI = NIR
RED

(Major et al., 1990)

Soil adjusted vegetation index
(SAVI)

SAVI = NIR−RED
(NIR+RED+0.5)

∗1.5 (Huete, 1988)

Structure insensitive pigment
index (SIPI)

SIPI = NIR−BLUE
NIR−RED

(Penuelas et al., 1995)

Crop water stress index (CWSI) CWSI = ((𝑇canopy−𝑇air )𝑀−(𝑇canopy−𝑇air )𝐿)
((𝑇canopy−𝑇air )𝑈−(𝑇canopy−𝑇air )𝐿)

(Jackson et al., 1981)

Abbreviations: L, lower baseline; M, measured; NIR, near infrared; Tair, air temperature (C˚); Tcanopy, canopy temperature (C˚); U, upper baseline.

F I G U R E 2 Flowchart shows the workflow of unmanned aerial
vehicle (UAV) image processing using the PIX4Dmapper and ArcGIS
Pro software packages.

index (PSRI; Major et al., 1990; Merzlyak et al., 1999),
ratio vegetation index (RVI; Major et al., 1990), soil adjusted
vegetation index (SAVI; Huete, 1988), structure insensitive
pigment index (SIPI; Penuelas et al., 1995), thermal images
representing canopy temperature, and CWSI, were computed.
Raster images for canopy temperature were obtained only for
Field-2, -3, and -4. Table 3 summarizes the band combina-
tions for all the vegetation indices used in this study. The
CWSI was computed for three fields (Field-2, -3, and -4) using
field specific baselines (CWSI-F) and overall baselines for the
composite dataset (CWSI-C). In other words, the CWSI-F was
calculated for each field using the minimum and maximum

canopy temperature of that particular field, while the min-
imum and maximum canopy temperature of the composite
dataset was used to calculate the CWSI-C for all the fields.

Raster images for each vegetation index and thermal image
created in Pix4Dmapper (Pix4D S.A.) were imported to
ArcGIS Pro 2.8 (ESRI Inc.) for the feature extraction and fur-
ther analysis (Figure 2). First, geo-coordinates of the ground
sampling locations from where the alfalfa was hand-harvested
were used to pin the locations in each raster image. A polygon
of size 1.5–1.8 m2 was created around all the geo-coordinates
to extract the mean values of different vegetation indices.
Then, a raster calculator was used to compute the mean values
for each point feature.

Figure 3 shows the steps involved in developing and vali-
dating the yield predicting models. The actual yield data and
information extracted from the raster image of the vegetation
indices for all four fields were merged to make a compos-
ite dataset. Therefore, the yield collected from a total of 180
sampling locations (n = 134 from Field-2, -3, and -4 for mod-
els involving thermal data) was considered during the model
development process. A total of 10 models were developed in
this study using simple, multiple, and robust regression tech-
niques. Ten simple linear regression models (with one input
predictor) were created using the eight vegetation indices,
including NDVI, EVI, GNDVI, OSAVI, PSRI, RVI, SAVI,
and SIPI, canopy temperature, and canopy minus air tem-
perature (dT). The mean air temperature values for the flight
duration for each field were obtained from the closest CIMIS
weather station.

The “leaps” package in RStudio (Lumley & Miller, 2020)
was used to select the most important crop indices for multiple
regression models through the branch-and-bound algorithm
(Lumley & Miller, 2020). Then, the Bayesian information
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6 of 13 SAPKOTA ET AL.

F I G U R E 3 Flow diagram showing the process of model development and model selection.

criterion (BIC) was used to determine the best representa-
tive subset of the crop indices. Similarly, this process was
repeated to evaluate the prediction power of the models when
we included thermal data from three fields in addition to the
multispectral images. A robust regression model was also
developed using the same subset of predictor variables as
multiple regression models. Since the data used in this study
are from multiple fields with varying irrigation rates and soil
types, the robust regression model was developed to accom-
modate all data points rather than treating extreme values as
outliers “Robust regression” (n.d). The composite dataset was
randomly divided into five equal size folds. Four folds were
used to develop the models, and the remaining fold was uti-
lized to test their accuracy. This process was repeated five
times, and each time a different fold was used as the test
subset.

The best-performing models were used to predict the total
alfalfa yield at each field. Raster images of all the needed veg-
etation indices were converted to 2 m × 2 m resolution. Next,
the NDVI maps were converted from raster to points for each
field, and any NDVI values less than 0.2 were removed as
they represent nonvegetation or bare soil surface (Montandon
& Small, 2008). Then, the filtered NDVI images were used
to mask raster images of other vegetation indices. Once the
masking was done, all raster images obtained using multispec-
tral bands were converted to point features. In total, 25,185,
30,286, 41,316, and 26,182 data points (pixel counts) were
extracted for each vegetation indices from the Field-1, Field-2,
Field-3, and Field-4, respectively. For each data point, alfalfa
yield was predicted using the best-performing models, and the
mean yield for each field was determined.

2.4 Model evaluation

The performance of the models was evaluated using the
coefficient of determination (R2; Equation 1), the root mean
square error (RMSE; Equation 2), and the mean absolute error
(MAE; Equation 3) for the composite dataset and separately

for individual fields.

𝑅
2 = 1 −

∑𝑁

𝑖 = 1 (𝑀𝑖 − 𝐸𝑖)2∑𝑁

𝑖 = 1 (𝑀𝑖 − �̄�)2
(1)

RMSE =

√√√√ 1
𝑁

𝑁∑
𝑖 = 1

(𝐸𝑖 − 𝑀𝑖)2 (2)

MAE = 1
𝑁

𝑁∑
𝑖 = 1

||𝐸𝑖 − 𝑀𝑖
|| (3)

where 𝑁 is the total number of observations, 𝑀𝑖 is the mea-
sured and 𝐸𝑖 is the predicted value of 𝑖th observation, and �̄�

is the mean of the measured yield values.

3 RESULTS AND DISCUSSION

3.1 Variation in actual yield values and
vegetation indices across the fields

Table 4 shows the descriptive statistics (minimum, maxi-
mum, mean, and standard deviation) of alfalfa dry matter yield
and eight different vegetation indices and canopy temperature
(thermal) obtained at the sampling locations of four fields.
The yield values ranged from 1952 to 2726 kg ha−1, with
Field-2 and Field-3 having the maximum and minimum dry
matter yield, respectively. The yield data used for this study
are associated with the September harvest cycle for Field-
1 and Field-2 and the October harvest cycle for Field-3 and
Field-4. Alfalfa dry matter yields are typically higher during
the September harvest cycle than in the October harvest cycle
in the region, partly explaining the relatively higher yields at
Field-1 and Field-2. In addition, all four fields were exposed
to different irrigation levels and had different soil types, which
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SAPKOTA ET AL. 7 of 13

T A B L E 4 Distribution of actual alfalfa dry matter yield and the vegetation indices and canopy temperature data at the four fields used in this
study.

Experiemental site Yield (kg ha−1) NDVI EVI GNDVI OSAVI PSRI RVI SAVI SIPI Thermal (˚C)
Field-1 (Harvested 5 days after the UAV flight)
Minimum 2219.28 0.92 0.22 −0.83 0.36 −0.08 24.52 0.23 0.97 –

Maximum 2712.46 0.94 0.32 −0.80 0.45 −0.06 33.15 0.33 0.99 –

Mean 2573.57 0.93 0.25 −0.81 0.39 −0.07 28.68 0.27 0.98 –

SD 91.43 0.005 0.02 0.01 0.02 0.004 2.09 0.02 0.003 –

Field-2 (Harvested 10 days after the UAV flight)
Minimum 2421.04 0.78 0.05 −0.72 0.11 −0.14 11.62 0.06 0.94 20.59

Maximum 2959.04 0.93 0.08 −0.64 0.16 −0.09 26.81 0.09 0.97 32.27

Mean 2726.55 0.90 0.07 −0.70 0.14 −0.12 21.60 0.08 0.95 26.27

SD 121.14 0.03 0.01 0.02 0.01 0.01 3.82 0.01 0.005 2.04

Field-3 (Harvested 24 days after the UAV flight)
Minimum 1658.86 0.32 0.02 −0.46 0.04 −0.18 1.99 0.02 0.87 27.88

Maximum 2443.45 0.65 0.03 −0.26 0.07 −0.06 4.94 0.04 1.06 47.26

Mean 1952.03 0.49 0.02 −0.37 0.05 −0.12 3.20 0.03 0.93 39.16

SD 134.64 0.07 0.003 0.04 0.01 0.03 0.65 0.004 0.04 4.62

Field-4 (Harvested 29 days after the UAV flight)
Minimum 1726.11 0.56 0.02 −0.61 0.06 −0.20 2.94 0.03 0.37 15.43

Maximum 2802.13 0.88 0.06 −0.33 0.14 −0.13 12.78 0.06 0.72 32.04

Mean 2327.27 0.81 0.04 −0.53 0.11 −0.17 8.66 0.05 0.63 23.00

SD 219.56 0.08 0.01 0.07 0.02 0.01 2.84 0.01 0.09 4.05

Abbreviations: EVI, enhanced vegetation index; GNDVI, green normalized difference vegetation index; NDVI, normalized difference vegetation index; OSAVI, opti-
mized soil adjusted vegetation index; PSRI, plant senescence reflectance index; RVI, relative vigor index; SAVI, soil adjusted vegetation index; SD, standard deviation;
SIPI, structure insensitive pigment index.

also contributed to the yield variability between the fields.
Between four fields, the alfalfa dry matter yield deviated less
from the mean yield at Field-1 (91.43 kg ha−1) and Field-2
(121.14 kg ha−1) than at Field-3 (134.64 kg ha−1) and Field-4
(219.56 kg ha−1). In addition to the variation in the yield, the
mean NDVI values at the sampling locations at Field-1 and
Field-2 were more than 0.9, while it was only 0.49 and 0.81 in
Field-3 and Field-4, respectively. Similarly, other vegetation
indices, including EVI, OSAVI, RVI, SAVI, and SIPI, also
showed greater absolute values at Field-1 and Field-2 (which
were near-ready to get harvested) than at Field-3 and Field-
4. The mean canopy temperature at Field-2 and Field-4 was
26 ± 2˚C and 23 ± 4˚C, respectively, while the canopy tem-
perature observed at Field-3 was relatively higher with a mean
value of 39 ± 2˚C (Table 4). Overall, Field-2 and Field-4 with
lower canopy temperatures had higher yields than Field-3
with higher canopy temperature values.

3.2 Overall performance of the models for
the composite dataset

Table 5 summarizes the performance statistics values for all
models developed in this study for the composite dataset

and provides the regression equations for all the models.
Figure 4 shows the scatter plots of actual versus estimated
alfalfa dry matter yield for the top-performing models. Sig-
nificant relationships were observed between actual and
estimated alfalfa dry matter yield for all simple linear mod-
els except for LMSIPI (where LM is linear model). Among
the simple linear models, LMNDVI showed the best per-
formance (R2 = 0.76, RMSE = 170.29 kg ha−1, and
MAE = 132.18 kg ha−1; Table 5) followed by LMGNDVI
(R2 = 0.74, RMSE = 179.41 kg ha−1, and MAE = 146.69 kg
ha−1; Table 5) and LMRVI (R2 = 0.66, RMSE = 199.90 kg
ha−1, and MAE= 158.10 kg ha−1; Table 5). The fit of all other
simple linear models that used EVI, OSAVI, PSRI, SAVI,
SIPI, canopy temperature, dT, and CWSI as input variables
were weak, with a coefficient of determination (R2) less than
0.54 (Table 5).

Our results are in line with the findings from a study
done in Saudi Arabia where the predicted yield using NDVI
values from Landsat-8 satellite images had a strong correla-
tion (R2 = 0.63) with the actual alfalfa yield values (Kayad
et al., 2016). Similarly, in an alfalfa study done at Ardmore,
OK, Cazenave et al. (2019) estimated alfalfa dry matter yield
using UAV-based NDVI and ground coverage data. They also
found a strong correlation (R2 = 0.87) between the harvested
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8 of 13 SAPKOTA ET AL.

T A B L E 5 Different yield prediction models and their performance for the composite dataset.

Models Regression equations RMSE (kg ha−1) R2 MAE (kg ha−1)
LMNDVI Yield (kg ha−1) = 1231.78 + 1479.32 * NDVI 170.29 ± 17.38 0.76 ± 0.05 132.18 ± 9.61

LMEVI Yield (kg ha−1) = 2150.51 + 1961.19 * EVI 288.53 ± 31.84 0.31 ± 0.11 235.40 ± 31.73

LMGNDVI Yield (kg ha−1) = 1437.32 − 1559.44 * GNDVI 179.41 ± 28.62 0.74 ± 0.06 146.69 ± 24.31

LMOSAVI Yield (kg ha−1) = 2082.28 + 1505.40 * OSAVI 273.96 ± 14.08 0.37 ± 0.04 221.83 ± 8.03

LMPSRI Yield (kg ha−1) = 2535.84 + 1707.47 * PSRI 336.19 ± 19.13 0.04 ± 0.03 294.64 ± 15.41

LMRVI Yield (kg ha−1) = 1967.94 + 25.54 * RVI 199.90 ± 14.37 0.66 ± 0.07 158.10 ± 10.99

LMSAVI Yield (kg ha−1) = 2137.59 + 1933.15 * SAVI 285.83 ± 3.22 0.31 ± 0.06 231.77 ± 8.99

LMSIPI Yield (kg ha−1) = 2062.10 + 306.80 * SIPI 341.14 ± 13.16 0.02 ± 0.02 303.92 ± 12.48

LMThermal
aYield (kg ha−1) = 3142.56 − 28.20 * Thermal 272.11 ± 31.68 0.45 ± 0.10 216.74 ± 21.16

LMCWSI-F
aYield (kg ha−1) = 2742.80 − 1431.00 * CWSI-F 303.77 ± 26.98 0.30 ± 0.05 247.03 ± 29.23

LMCWSI-C
aYield (kg ha−1) = 2765.86 − 1374.84 * CWSI-C 272.11 ± 31.68 0.45 ± 0.10 216.74 ± 21.16

LMdT
aYield (kg ha−1) = 2056.90 − 32.95 * dT 250.27 ± 32.52 0.54 ± 0.08 196.86 ± 23.08

MLR Yield (kg ha−1) = 1467.00 + 2249.00 * NDVI −
1717.00 * OSAVI + 4419.00 * PSRI

142.99 ± 23.06 0.83 ± 0.04 109.30 ± 14.71

RR Yield (kg ha−1) = 1473.61 + 2244.35 * NDVI −
1710.96 * OSAVI + 4411.37 * PSRI

143.05 ± 17.41 0.83 ± 0.03 108.65 ± 12.41

Abbreviations: CWSI-C, crop water stress index calculated for all the fields using the minimum and maximum canopy temperature of the composite dataset; CWSI-
F, crop water stress index calculated for each field using the minimum and maximum canopy temperature of that particular field; dT, difference of canopy and air
temperature in degree Celsius; EVI, enhanced vegetation index; GNDVI, green normalized difference vegetation index; LM, linear models; MAE, mean absolute error;
MLR, multiple linear regression; NDVI, normalized difference vegetation index; OSAVI, optimized soil adjusted vegetation index; PSRI, plant senescence reflectance
index; R2, coefficient of determination; RMSE, root mean square error; RR, robust regression; RVI, relative vigor index; SAVI, soil adjusted vegetation index; SIPI, structure
insensitive pigment index; Thermal, canopy temperature in degree Celsius; ± represents the standard deviation.
aData from only three fields (Field-2, -3, -4) were used to build these two models that use thermal data.

F I G U R E 4 Scattered plots showing the relationship between the actual and predicted alfalfa yield for five different models: (a) LMNDVI, (b)
LMGNDVI, (c) LMRVI, (d) multiple linear regression (MLR), and (e) robust regression (RR). Colorful rings in the graph represent different fields.
Blue = Field-1; yellow = Field-2; gray = Field-3; and orange = Field-4. LM, linear models; RMSE, root mean square error; R2, coefficient of
determination; MAE, mean absolute error; NDVI, normalized difference vegetation index; GNDVI, green normalized difference vegetation index;
RVI, relative vigor index.
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and estimated dry biomass (Cazenave et al., 2019). How-
ever, some contrasting findings suggest NDVI may not be an
effective vegetation index to estimate alfalfa yield because of
alfalfa’s dense canopy that stabilizes the NDVI values with a
mean NDVI in the upper spectrum of the scale and ignores
within-field variability (Ferencz et al., 2004; Kayad et al.,
2016). A recent study at Prosser, WA, also found a weak rela-
tion (R2 = 0.29) between NDVI estimated and actual alfalfa
yield (Chandel et al., 2021). They indicated that, though
NDVI is an effective index at the early crop growth stages,
with the vegetative growth and increase in leaf area and plant
height, NDVI saturates (Chandel et al., 2021). The high per-
formance of the LMNDVI model in our study is attributed to
the (I) high range of NDVI for our composite dataset and
(II) expected positive correlation between NDVI and ground
vegetation biomass in summer (Borowik et al., 2013).

The GNDVI, which evaluates plant stress by measuring the
rates of photosynthesis, is also well used to predict alfalfa
yield (Chandel et al., 2021; Noland et al., 2018). Noland et al.
(2018) found that their GNDVI-based model made an accu-
rate prediction of alfalfa yield (R2 = 0.52) and forage quality
(crude protein; R2 = 0.40). Similarly, Chandel et al. (2021)
suggested a positive correlation (R2 = 0.43) between alfalfa
yield and GNDVI. These findings are similar to the findings
of this study (Model LMGNDVI; Table 5); however, the results
obtained in this study suggest a stronger relationship between
alfalfa yield and GNDVI (R2 = 0.74; Table 5). On the other
hand, the usefulness of the RVI to predict alfalfa yield has not
been well studied. However, a positive correlation (R2 = 0.66)
between alfalfa yield and LMRVI was observed in this study.
Similar findings (R2 = 0.89) between RVI (aka simple ratio)
and durum wheat in the Mediterranean region were reported
(Royo et al., 2003).

Models developed using multiple linear regression (MLR)
and the robust regression (RR) approach showed strong yield
predicting abilities (Table 5). The best MLR model included
three predictor variables, including NDVI, OSAVI, and PSRI.
These three indices were selected based on the BIC val-
ues described earlier in Section 2. Canopy temperature and
dT were omitted during the parameter selection process,
indicating that they were not among the strongest inputs
to predict alfalfa yield. However, dT predicted alfalfa yield
with better accuracy (R2 = 0.54) than canopy temperature
(R2 = 0.45). The MLR fit was significant (p < 0.001) to the
predicted yield and the relationship was strong (R2 = 0.83,
RMSE = 142.99 kg ha−1, and MAE = 109.30 kg ha−1;
Table 5). It outperformed all the linear models and compared
to the best performing linear model (i.e., LMNDVI) with 7%
greater R2 and 16% lesser RMSE. The RR model also showed
equal strength as MLR in predicting alfalfa yield using the
same three predictor variables, including NDVI, OSAVI,
and PSRI. The fit was significant (p < 0.001) and strong

(R2 = 0.83, RMSE = 143.05 kg ha−1, and MAE = 108.65 kg
ha−1; Table 5). Compared to the best performing linear
model (i.e., LMNDVI), the RR model showed a stronger pre-
dicting power with 7% greater R2 and 16% lesser RMSE
values.

Of the three predictor variables used in MLR and RR,
NDVI measures plant vigor and greenness (Easterday et al.,
2019), OSAVI eliminates background soil and estimates
aboveground biomass (Xue & Su, 2017), and PSRI measures
carotenoid pigment and reflects the canopy stress (Zhang
et al., 2018). These predictor variables accounted for the
alfalfa’s growing condition and physiology, hence resulting
in a strong alfalfa yield predicting model. Our finding showed
that the canopy temperature related inputs were not as strong
candidates for in-season estimation of alfalfa yield. Remote
sensing-based statistical yield models are region-specific and
may not be suitable for identifying yield variability even at the
state level (Schwalbert et al., 2018). Therefore, more research
and validation of the models developed in this study are
needed to determine whether they can provide reliable alfalfa
dry matter yield estimation in other desert agricultural regions
worldwide with similar weather conditions.

3.3 Performance of the models in
individual fields

Table 6 summarizes the performance statistics values for the
top-performing models for the composite dataset and each
individual field. The LMNDVI was the most accurate linear
model in Field-1 and Field-2 with RMSE of 98.06 kg ha−1

and 203.28 kg ha−1, respectively. The LMGNDVI was the most
accurate linear model in Field-3 and Filed-4 with RMSE
of 146.58 kg ha−1 and 203.08 kg ha−1, respectively. Linear
models with canopy temperature or dT did not outperform
other models in either of the three fields. The MLR model
was the best overall model (RMSE ranging from 98.86 kg
ha−1 to 193.25 kg ha−1), followed by the RR (RMSE ranging
from 99.27 kg ha−1 to 193.52 kg ha−1) across all the fields.
Consequently, both these models provided the most accu-
rate estimation of mean alfalfa dry matter yield for all fields
(Table 7). Field-1 and Field-2 with UAV images collected
near the actual field harvest showed lower errors than Field-
3 and Field-4, with UAV captured well ahead of the actual
field harvest. We attribute this to variations in alfalfa’s spec-
tral signature over time across growth stages, which impacts
the values of vegetation indices (Shen et al., 2010). There-
fore, accurate estimation of alfalfa yields early in the season
using UAVs may be challenging, and more studies are needed
to evaluate the performance of UAV-based models for yield
estimation using images taken at different alfalfa growth
stages.
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10 of 13 SAPKOTA ET AL.

T A B L E 6 Performance of the models for composite dataset and individual fields

Models Composite data Field-4 Field-3 Field-2 Field-1
Daysa R2 29 24 10 5
LMNDVI 0.76 ± 0.05 0.23 0.02 0.01 0.01

LMGNDVI 0.74 ± 0.06 0.25 0.05 0.01 0.00

LMRVI 0.66 ± 0.07 0.26 0.01 0.02 0.01

MLR 0.83 ± 0.04 0.23 0.07 0.02 0.02

RR 0.83 ± 0.03 0.23 0.07 0.02 0.02

RMSE (kg ha−1)

LMNDVI 170.29 ± 17.38 215.78 160.60 203.28 98.06

LMGNDVI 179.41 ± 28.62 203.00 146.58 232.01 156.63

LMRVI 199.90 ± 14.37 237.05 165.56 252.09 162.08

MLR 142.99 ± 23.06 193.25 139.67 126.81 98.86

RR 143.05 ± 17.41 193.52 139.96 125.93 99.27

MAE (kg ha−1)

LMNDVI 132.18 ± 9.61 164.30 132.59 176.92 67.87

LMGNDVI 146.69 ± 24.31 157.48 115.90 210.77 127.69

LMRVI 158.10 ± 10.99 186.89 126.44 220.77 129.68

MLR 109.30 ± 14.71 141.02 115.50 97.11 74.52

RR 108.65 ± 12.41 140.86 115.26 96.01 73.80

Abbreviations: GNDVI, green normalized difference vegetation index; LM, linear models; MAE, mean absolute error; MLR, multiple linear regression; NDVI, normalized
difference vegetation index; R2, coefficient of determination; RMSE, root mean square error; RR, robust regression; RVI, relative vigor index; ± represents the standard
deviation.
aDays between UAV flight and harvest.

T A B L E 7 Mean alfalfa yield obtained using the best performing models for the composite dataset and each field included in the study.

Models Composite data Field-1 Field-2 Field-3 Field-4
Daysa 5 10 24 29
Actual yield, kg ha−1

(mean ± SD)
2334.43 ± 342.52 2573.57 ± 92.44 2726.55 ± 122.91 1952.03 ± 135.7 2327.27 ± 222.76

LMNDVI, kg ha−1

(mean ± SD)
2334.43 ± 297.67 2583.75 ± 116.09 2573.98 ± 64.36 1941.27 ± 200.02 2387.01 ± 191.64

LMGNDVI, kg ha−1

(mean ± SD)
2334.43 ± 291.43 2681.25 ± 86.81 2537.48 ± 56.02 1992.91 ± 113.19 2228.94 ± 161.94

LMRVI, kg ha−1

(mean ± SD)
2334.43 ± 278.53 2657.82 ± 165.65 2539.77 ± 122.07 2048.06 ± 30.34 2176.99 ± 91.76

MLR, kg ha−1 (mean ± SD) 2334.50 ± 312.24 2575.24 ± 97.96 2705.77 ± 92.03 1948.36 ± 115.71 2317.06 ± 244.43

RR, kg ha−1 (mean ± SD) 2339.56 ± 311.83 2580.4 ± 97.72 2710 ± 91.85 1953.92 ± 115.47 2321.92 ± 243.96

Abbreviations: GNDVI, green normalized difference vegetation index; LM, linear models; MLR, multiple linear regression; NDVI, normalized difference vegetation
index; RR, robust regression; RVI, relative vigor index; SD, standard deviation.
aDays between UAV flight and harvest.

The R2 values at the field level were substantially lower
than the composite dataset. However, the field-level error
statistics (RMSE and MAE) were in an acceptable range for
all models (Table 6), and they provided an accurate estimation
of mean yield for all fields (Table 7). We attribute the low R2

values to the narrow ranges of vegetation indices and rela-
tively low within-field yield variability for all the fields. The

vegetation indices used as input predictors did not detect small
yield variabilities in each field. On the other hand, the varia-
tion in vegetation indices and yield between the fields was
significant. Therefore, models developed using the composite
dataset showed promising performance and could detect yield
variabilities between the fields, as evident in Figure 4 and high
overall R2 values for the composite dataset.
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SAPKOTA ET AL. 11 of 13

4 CONCLUSION

The multiple linear regression model with NDVI, OSAVI,
and PSRI as predictor variables (obtained from UAV-based
multispectral images) provided the accurate estimation of
fall-harvested alfalfa dry matter yield in this study. Includ-
ing canopy temperature related inputs did not enhance the
yield prediction performance of the models. The top UAV-
based models in this study distinguished between fields with
high and low alfalfa dry matter yield values. The models,
however, did not accurately detect within-field yield vari-
abilities, which is attributed to relatively low variability in
input predictors and actual yield for each field. Future works
are needed to assess the reliability of these fall-harvested
yield predicting models in other desert agricultural regions
worldwide with similar weather conditions. The potential of
satellite-based remote sensing images to estimate the mean
alfalfa yield at the field scale can also be assessed. UAV-based
remote sensing provides high-resolution data that, if coupled
with in-season climatic and crop physio-morphological infor-
mation, may help build robust yield-predicting models that
can identify within-field variability for site-specific precision
farming.
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