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Production functions (PFs) are practical tools for not only irrigation scheduling but also in economic
analysis as a mathematical relationship between relative grain yield and factors like evapotranspiration,
irrigation water and salinity. This study was carried out in the Mashhad region of Iran during cropping
years 2010 and 2011 to evaluate the performances of two data mining methods, decision tree and neural
network, for deriving PFs of spring wheat under simultaneous drought and salinity stress compared with
four well known regression-based PFs. The four well known PFs were: Jensen-PF (Jensen, 1968), Minhas-
PF (Minhas et al., 1974), modified Stewart-PF (Stewart et al., 1977; Stegman et al., 1980), and Nairizi-PF
(Nairizi and Rydzewski, 1977). Heading and flowering were the most sensitive growth stages followed by
the stem elongation and booting. Salinity stress also affected grain yield and therefore was an important
parameter for deriving PFs. In general, all the PFs were in agreement concerning the sensitivity of spring
wheat to water stress. The neural network-based PF performed the best with a root mean square error
equal to 44.27 g m�2 while the decision tree-based PF ranked fourth out of six in terms of accuracy.
The most important advantage of the neural network-based PF was the flexible number of input
parameters.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The agriculture sector is the major consumer of water in arid
and semi-arid regions of Iran. Consequently, agricultural water
management is the most important and sensitive part of any
integrated water consumption reduction plan. Practicing deficit
irrigation (DI) and using saline water for irrigation are among the
most frequently used methods for overcoming water shortages.
However, since both salinity and drought reduce the availability
of soil water for crops, yield reduction needs to be predicted accu-
rately (Domínguez et al., 2011). Moreover, salinity is a natural con-
sequence of long term DI practices in arid and semi-arid regions.

A considerable number of studies have been published on salin-
ity and DI of winter wheat in Iran, e.g. Dehghanisanji et al. (2009),
Gowing et al. (2009), Kiani and Abbasi (2009), yet there are few
studies focusing on DI for spring wheat. However, on a world-wide
level, spring wheat is a critical crop because water use is reduced
since it is harvested before the high evaporative demand of
summer and water use productivity is increased since it can take
advantage of spring rainfall (López-Urrea et al., 2009).

The mathematical estimation of yield response is called a pro-
duction function (PF). PFs are very practical in irrigation scheduling
and are useful in economic analysis. Traditional PFs like those
derived by Jensen (1968) and Nairizi and Rydzewski (1977) use de-
tailed relative evapotranspiration (ET) or irrigation water require-
ment (IW) in relationship to specified crop-growth stages as the
independent variables. Recently researchers have incorporated
more independent variables to derive PFs. For instance, Kuang
et al. (2012) reformulated some well-known PFs for considering
waterlogging stress on corn. Also Ai-hua et al. (2012) investigated
fertilization as an independent variable for deriving rice PF. While
utilizing more input predictors introduces more complexity and
non-linearity in the process, this complexity may be required in
to convey an accurate assessment of many situations. However,
the traditional regression-based empirical equations have a lower
modeling capability to precisely model the non-linear relation-
ships for complex ecological systems (Dai et al., 2011).

Nearly all of the previously published well-known PFs are
regression-based. Recently, data mining (DM) procedures, like
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neural network (NN) and decision tree (DT) are being employed as
alternative options for modeling complex non-linear systems (Dai
et al., 2011; Haghverdi et al., 2012). Mucherino et al. (2009) noted
an increased number of DM studies in agriculture and expects
more growth in the future. Moreover, Huang et al. (2010) men-
tioned the successful modeling result of DM-based procedures in
the variety of investigation domains such as soil and water, crop
management, soil physics, and precision agriculture. Recently,
some studies have utilized NN to model yield levels for different
crops (e.g. Fortin et al., 2010; Dai et al., 2011; Ehret et al., 2011).
Dai et al. (2011) used NN to simulate the response of sunflower
crop yield to soil moisture and salinity. They found that NN is more
accurate than regression method for estimating crop yield using
soil moisture and salinity at different crop growth stages as input
predictors.

Above studies have confirmed the potential of NN for precisely
predicting the yield of different crops by means of soil data (Dai
et al., 2011) and weather and crop data (Fortin et al., 2010), yet
no attempt has been done to predict yield variation in respect to
quality and quantity of irrigation water. This study aims to address
the need of a robust site specific empirical model for irrigation
scheduling which would transfer the data that we have (i.e. easy
collected irrigation related information) to what we need (i.e. the
amount of yield). The specific objectives of the current study are:
(1) to develop DM-based PFs for spring wheat using irrigation
water salinity (EC) and IW at different growth stages as input
predictors; (2) to identify the domain of influence of each input
predictor; (3) to estimate the parameters of some previously
well-known regression-based PFs; and (4) to evaluate the perfor-
mance of DM-based PFs in comparison with regression-based PFs
in northeast of Iran.

2. Materials and methods

2.1. Site description and general information

The location of the study was Mashhad region in northeastern
Iran. A two year cropping study, 2010–2011, was conducted at the
research farm of Ferdowsi University of Mashhad at 36� 160 N lati-
tude, 59� 380 E longitude, 985 m above sea level. The spring wheat
cultivar (Triticum-aestivum) was planted on the 13th of March
2010 and on the 17th of March 2011. Weather data and soil proper-
ties for the site are shown in Table 1. From 1985–2010, the mean an-
nual precipitation, the mean minimum and mean maximum annual
temperature and the mean annual relative humidity were
265 ± 72.7 mm, 8 ± 1.2 �C, 22 ± 0.9 �C and 55 ± 5.7%, respectively.

The surface (0–40 cm) and the subsurface (40–100 cm) layers
are silt loam and clay loam, respectively. Soil sampling was done
in the root zone, up to 100 cm at 20 cm intervals, in five different
locations, corners and the center of the field. The soil texture and
Table 1
Weather parameters and soil information during the cropping seasons (i.e. from
March to July), 2010 and 2011, in the experimental location, Mashhad region of Iran.

Weather parameters 2010 2011

Average of minimum daily temperature (�C) 13.57 12.99
Average of maximum daily temperature (�C) 26.96 26.51
Average of monthly precipitation (mm) 24.93 56.94
Average of minimum daily relative humidity (%) 27.81 35.87
Average of maximum daily relative humidity (%) 64.75 59.90

Soil characteristics (cm)b 0–40 40–100
Texture Silt loam Clay loam
Bulk density (g cm�3) 1.37 1.48
Water content at FC (cm3 cm�3)a 0.31 0.32
Water content at PWP (cm3 cm�3)a 0.10 0.16

a FC: field capacity; PWP: permanent wilting point.
b Field had no initial salinity problem.
bulk density were measured using the hydrometer method (Gee
and Bauder, 1986) and the soil clods method (Blake and Hartge,
2002), respectively. The water content at field capacity (FC,
�33 kPa), and permanent wilting point (PWP, �1500 kPa), were
estimated using k-Nearest software (www.ars.usda.gov). The
k-Nearest software is a soil hydraulic pedotransfer function tool
for the estimation of soil water contents at FC and PWP using the
k-nearest neighbor approach (Nemes et al., 2008). The estimated
water contents at different sampling points were averaged and
were used for IW scheduling. The normal irrigation interval in
the Mashhad region is 12 days. However for avoiding undesired
water stress, a 10 day irrigation interval was applied for the whole
irrigation season. The amount of IW for each plot was accurately
applied using a volumetric water flow meter sensitive to 0.1 L.
There were two sources of saline water and fresh water available
with EC equal to 0.5 and 10 dS m�1, respectively. The rest of the
salinity levels were applied by combining these sources in storage
tanks. Studying the effect of initial soil salinity on wheat yield was
out of the scope of this study. The field of study had not been irri-
gated with saline water before the experiment hence had no initial
salinity problem in the first year of the experiment. In the second
year the location of the plots were slightly adjusted the way that
those plots which were irrigated in the first year with saline water
were not inside the experimental region anymore.

For both cropping seasons, the salinity and DI were applied after
appearance of the third leaf of the crop. Before that, all of the plots
were fully irrigated with the same amount of non-saline water.
Crop disease and pest management, fertilizer supplements and till-
age practices were identical following research-farm recommenda-
tions. Harvest was done on the 22 of June 2010 for the first
cropping season and from 30 June to 4 July 2011 for the second
cropping season. The plots were hand harvested utilizing the cen-
ter of each plot (i.e. 1 m2) to eliminate the possible edge effect of
neighboring plots.

2.2. Experimental designs in the first year

A four-factor, two level unreplicated factorial design was em-
ployed in the first year. The variables were IW at different wheat
growth stages (i.e. seedling growth-tillering (stage 1), stem elonga-
tion-booting (stage 2), heading-flowering (stage 3), and dough
stage-ripening (stage 4)) and the variable levels were 20% and
100% of IW. In addition, the central point (60% of IW at all growth
stages) with two replications was applied. The experiment was
replicated for two different EC, 0.5 and 10 dS m�1. Two level facto-
rial designs usually are utilized for screening many factors to dis-
cover the vital factors, and how they interact (Myers et al., 2009).
The purpose of the first year design was to identify the region of
interest of the variables in order to design the second year exper-
iment. Monetary and labor resources for doing field experiments
are usually limited, thus the number of replications are typically
low. Consequently, available resources only allowed an unreplicat-
ed design for these experiments, otherwise some of the original
factors would have been omitted. For estimating error, the mean
squares of high-order interactions were combined, based on the
sparsity of effects principle (Myers et al., 2009). The growth stages
were identified weekly based on Zadoks et al. (1974) growth stages
code (Table 2). There were 36 (2 m � 2.1 m) plots within 4 rows
with 2 m intervals between rows and 1 m interval between plots
in each row, for excluding the side effects.

During the first year, IW was calculated based on time-domain
reflectometry (TDR) readings from TRASE Model 6050X1 probes
(Soil Moisture Equipment, Santa Barbara CA, USA). Prior to apply-
ing treatments, four moisture probes were placed at the 20, 40,
70, and 100 cm soil depths in each plot. The soil moisture
from the 100% IW treatment using non-saline water was used to

http://www.ars.usda.gov


Table 2
Growth stages of spring wheat in Mashhad region and corresponding irrigation water.

Growth
stages

Symbol Zadoks
growth stages

1st year
irrigation
(mm)b

2nd year
irrigation
(mm)

Beginning 0 Emergence-seedling growth 40, 40 40, 40
Beginninga 1 Seedling growth-tillering 36, 52 36, 54
Middle 2 Stem elongation-booting 44, 84 63, 87
Middle 3 Heading-flowering 62, 112 96, 122
End 4 Dough stage-ripening 148 150

a Beginning of the deficit and saline treatments.
b The irrigation values belong to the full irrigation treatment which was applied

by means of both non saline (0.5 dS m�1) and saline (10 dS m�1) water resources.
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determine the irrigation amounts of all treatments. Soil moisture
was measured the day before irrigation and IW requirement was
calculated as the difference between actual water content and FC
in the root zone. Based on the previous local observations, the
maximum root zone depth for spring wheat was assumed to be
1 m at the last irrigation, approximately two weeks before harvest-
ing, with a linear growth rate during the cropping season. Crop
evapotranspiration (ET) was calculated by the water balance equa-
tion using TDR measured data. Since the groundwater table is very
deep (>70 m) and measured irrigation prevented over application,
water movement between the root zone layer and deeper layers
was ignored. Also plots were sheltered for excluding the effect of
rainfall and were surrounded by earth dykes, 30 cm in height, in
order to prevent the lateral spread of irrigation water.

2.3. Experimental designs in the second year

A five-factors, five level central composite design (CCD) was
employed during the second year (Myers et al., 2009). The
Table 3
Detailed information of experimental plots, levels of variables, at the second cropping sea

Plota Variable

1 2 3 4 EC

Unreplicated factorial design
1 0.4F 0.4F 0.4F 0.4F 1.89
2 0.4F 0.9F 0.4F 0.4F 1.89
3 0.4F 0.4F 0.9F 0.4F 1.89
4 0.4F 0.9F 0.9F 0.4F 1.89
5 0.4F 0.4F 0.4F 0.9F 1.89
6 0.4F 0.9F 0.4F 0.9F 1.89
7 0.4F 0.4F 0.9F 0.9F 1.89
8 0.4F 0.9F 0.9F 0.9F 1.89
9 0.9F 0.4F 0.4F 0.4F 1.89
10 0.9F 0.9F 0.4F 0.4F 1.89
11 0.9F 0.4F 0.9F 0.4F 1.89
12 0.9F 0.9F 0.9F 0.4F 1.89
13 0.9F 0.4F 0.4F 0.9F 1.89
14 0.9F 0.9F 0.4F 0.9F 1.89
15 0.9F 0.4F 0.9F 0.9F 1.89
16 0.9F 0.9F 0.9F 0.9F 1.89

Axial unreplicated runs
33 0.65F 0.65F 0.65F 0.65F 0.5
34 0.65F 0.65F 0.65F 0.3F 5.25
35 0.65F 0.65F 0.3F 0.65F 5.25
36 0.65F 0.3F 0.65F 0.65F 5.25
37 0.3F 0.65F 0.65F 0.65F 5.25

Central replicated runs
43 0.65F 0.65F 0.65F 0.65F 5.25
44 0.65F 0.65F 0.65F 0.65F 5.25

Additional runs
47 0 0 0 0
48 0 0 0 0
49 F F F F 0.5

a F: Full irrigation; 1, 2, 3, 4: irrigation water (% of full irrigation treatment) at differe
variables were IW at 4 different growth stages, same as the first
year, and EC. Table 3 shows the detailed information about the
second year experiment including applied levels of each variable.
The irrigation levels were 30%, 40%, 65%, 90% and 100% of water
requirement and salinity levels were 0.5, 1.8, 5.25, 8.6 and
10 dS m�1. The established CCD consists of 3 components: an unre-
plicated factorial design, axial runs and central point. In addition to
CCD, a rainfed and a full irrigation treatment each with 2 replica-
tions were applied. Comparing to the first cropping year, the
number of plots were increased to 52 while the size and structure
of the plots and distance between them and between rows were
similar to the first cropping year. However in the second year, plots
were not sheltered and TDR probes were not used because the
number of plots was high while available financial and labor
resources were limited. In fact, this year volumetric sampling
was done the day before each irrigation event from the main plot,
full irrigation with non-saline water, for calculating the amount of
IW. During the second year, root zone salt distribution was
monitored by measuring the salinity of saturated paste from
samples which were randomly gathered from different plots at
different growth stages at two different depths, 0–30 cm and
30–60 cm. Initial random sampling before applying treatments
showed the soil profile salinity level of the whole experimental
area was uniform and negligible.

2.4. Well known regression-based PFs

Four well known PFs were used in this study: The Jensen-PF
((Eq. (1)) –Jensen, 1968); the Minhas-PF (Eq. (2) – Minhas et al.,
1974); the modified Stewart-PF ((Eq. (3)) – Stewart et al., 1977
and Stegman et al., 1980), and the Nairizi-PF (Eq. (4) – Nairizi
and Rydzewski, 1977).
son.

Plot Variable

1 2 3 4 EC

17 0.4F 0.4F 0.4F 0.4F 8.61
18 0.4F 0.9F 0.4F 0.4F 8.61
19 0.4F 0.4F 0.9F 0.4F 8.61
20 0.4F 0.9F 0.9F 0.4F 8.61
21 0.4F 0.4F 0.4F 0.9F 8.61
22 0.4F 0.9F 0.4F 0.9F 8.61
23 0.4F 0.4F 0.9F 0.9F 8.61
24 0.4F 0.9F 0.9F 0.9F 8.61
25 0.9F 0.4F 0.4F 0.4F 8.61
26 0.9F 0.9F 0.4F 0.4F 8.61
27 0.9F 0.4F 0.9F 0.4F 8.61
28 0.9F 0.9F 0.9F 0.4F 8.61
29 0.9F 0.4F 0.4F 0.9F 8.61
30 0.9F 0.9F 0.4F 0.9F 8.61
31 0.9F 0.4F 0.9F 0.9F 8.61
32 0.9F 0.9F 0.9F 0.9F 8.61

38 F 0.65F 0.65F 0.65F 5.25
39 0.65F F 0.65F 0.65F 5.25
40 0.65F 0.65F F 0.65F 5.25
41 0.65F 0.65F 0.65F F 5.25
42 0.65F 0.65F 0.65F 0.65F 10

45 0.65F 0.65F 0.65F 0.65F 5.25
46 0.65F 0.65F 0.65F 0.65F 5.25

50 F F F F 0.5
51 F F F F 10
52 F F F F 10

nt growth stages (identical to Table 2), EC: irrigation water salinity (dS m�1).



A. Haghverdi et al. / Computers and Electronics in Agriculture 101 (2014) 68–75 71
Ya
Ym
¼
Yn

i¼1

ETai

ETmi

� �ki

i

ð1Þ

Ya
Ym
¼
Yn

n¼1

1� 1� ETa
ETm

� �
i

� �2
" #bi

ð2Þ

1� Ya
Ym

� �
¼
Xn

i¼1

Kyi 1� ETa
ETm

� �
i

ð3Þ

Ya
Ym
¼
Yn

i¼1

IWai

IWmi

� �ci

i

ð4Þ

where Ya, ETa and IWa are the grain yield (GY), evapotranspira-
tion, and IW from stressed treatments; Ym, ETm and IWm are grain
yield, evapotranspiration, and IW from the non-stressed treat-
ment; i shows the growth stage; k, d and c are the Jensen’s, Min-
has’ and Nairizis’ moisture stress sensitivity indices, respectively;
Ky is the modified Stewart’s moisture stress yield reduction coef-
ficient; n is the number of growth stages; and

P
is the additive

sign and P is a multiplicative sign. Since the first three PFs needed
ET information, they were derived only using the data from the
first cropping season while the fourth Equation, i.e. Nairizi-PF,
was established using the combined data from both the first and
the second cropping seasons. Regardless of salinity levels, all of
the plots were combined and randomized prior to deriving the
PFs. From this data set, 75% was used for deriving PFs and 25%
for testing the accuracy of the derived PFs. For identifying mois-
ture-stress sensitivity indices, the equations were transformed
into a multiply linear function, in which the indices were the coef-
ficients and the relative IW and ET were the input predictors and
relative GY was the output predictor. No attempt was made to
modify the four regression-based PFs with a salinity predictor.
However, salinity effects are incorporated into the ET-based PFs
because ET will be reduced by high salt concentrations. The
amount of precipitation in the second year at the period of apply-
ing treatments was very small (less than 4% of the applied IW)
thus contribution of it in fulfilling the IW requirement was as-
sumed to be negligible.

2.5. Decision trees to derive PF

Decision tree (DT) is a well-known data mining procedure. DT
has a top-down branched structure containing some if-then rules
for modeling the desired attribute in regard to the relative impor-
tance of input predictors in the system under study (Huang et al.,
2010). The tree is fitted to a dataset by separating the data into
homogeneous subsets in regard to the input predictors, and the
output is predicted by the tree leaves for all samples. Finally, the
top-down pruning process is used to improve the generalization
ability of the tree for classifying the new samples and helping to
avoid over-fitting (Witten et al., 2011).

In the current study, the Classification and Regression Tree
(CART) (Breiman et al., 1984) was employed to derive the PF.
CART models repeatedly partition the data to find increasingly
homogeneous subsets based on input predictors splitting criteria
using variance minimizing algorithms. The number and combina-
tion of input predictors is user-defined when one uses DM tech-
niques. That is why in addition to the relative IW at different
growth stages, EC was utilized as an input predictor for deriving
DT-PF. The first and the second cropping season’s data were com-
bined and randomized and then divided into two groups for
development (75% of data) and for testing (25%). Maximum tree
depth was set to five. Minimum records in the parent and
child branches were set to 2% and 1% of data, respectively as
the stopping criteria for splitting specific branches of the tree.
Furthermore the minimum change in impurity was set to
0.0001; thus if the best split for a branch reduced the impurity
by less than the specified amount, the split was not be made.

2.6. Neural networks to derive PF

A Neural Network (NN) is a non-linear statistical data mining
method capable of modeling complex relationships between input
and output predictors. In the other words, NN is a parallel struc-
tured modeling tool inspired by the function of the human brain.
Its effectiveness is derived from the fact that it does not require a
priori functional form to relate input predictors to the outputs
(Mucherino et al., 2009).

A three-layer perceptron, the most widely adopted network
used to map input–output relationships (Maren et al., 1990),
was used in this study. The NN architecture consisted of an input
layer, a hidden layer, and an output layer. The tangent hyperbolic
was chosen as the activation function for the hidden layer nodes,
which helped in non-linearly by transforming the inputs into an
alternative space where the training samples were linearly sepa-
rable (Brown and Harris, 1994), while the linear activation func-
tion was used for the output layer. The Levenberg-Marquardt
algorithm (Shepherd, 1997; Demuth and Beale, 2000; Pulido-
Calvo and Portela, 2007) was selected for the network training
process. All NN modeling steps were performed using Neurosolu-
tion 5.07 (www.nd.com) software evaluation version. After ran-
domly combining the first and second cropping season’s data,
75% was used for developing PFs and 25% for testing the accuracy
of the derived PFs. To avoid overtraining, the development data
set was divided into two individual parts: for training (60% of
whole data) and for cross-validation (15% of whole data). The
cross-validation part stopped the training process using super-
vised learning control. The default number of iterations for train-
ing was set at 1000. The training process stopped when the mean
square error of the cross-validation set began to increase. The
number of neurons in the hidden layer changed from 1 to 15
and the training was repeated 3 times for each number of hidden
neurons (Iyer and Rhinehart, 1999). The input and output predic-
tors were identical with DT-PF.

Sensitivity analysis was done after deriving NN-PF to identify
the level of importance of each input predictor on GY modeling.
In fact, sensitivity analysis was a method for extracting the cause
and effect relationship between the inputs and outputs of the net-
work. Standard deviations were added and subtracted from the
mean of each of input predictor. The trained network then was
used to calculate the variation in GY corresponding with the vari-
ation of each individual input predictor in 100 equal steps when
the rest of the predictors were set to be constant and have the
average of their magnitudes.

2.7. Evaluation criteria

The procedure for deriving PFs, and therefore testing them,
was repeated 4 times to improve the reliability of the results
by involving all of the data in testing phase. The whole data
set was randomly divided to 4 equal parts and each time 3 parts
were selected for derivation while the remaining part was used
for testing. The program IRENE (www.isci.it/tools) was adopted
for calculating the selected statistics, i.e. root mean square of er-
ror (RMSE), correlation coefficient (r) and mean bias error (MBE),
for evaluating the performances of the PFs as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðEi �MiÞ2

n

s
ð5Þ
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where Mi is the measured GY; Ei is the estimated GY for ith treat-
ment; �M is the average of measured GY; �M is the average of
estimated GY and n is the number of treatments.

3. Results

3.1. PF indices and predictor variables importance

The indices and coefficients of the PFs are illustrated in Table 4.
The presented indices for each individual PF in fact are the mean
and standard deviation of the four times deriving procedure. The
highest indices and coefficients occurred at the middle stages
(Table 2) for all PFs corresponding to heading and flowering, fol-
lowed by the stem elongation and booting growth stages. In gen-
eral, the indices and coefficients at the beginning and at the end
of the cropping season were lower than the middle stages of the
season. Indeed the lowest indices belonged to the first growth
stage for all of the PFs except for the Nairizi-PF.

The structure of DT-PF is presented in Fig. 1. The nods were la-
beled by corresponding predictor names while the leaves of the
tree were labeled by the predicted GY value. The splitting values
were also written for the top four layers to make the topology of
the tree more clear. The tree in Fig. 1 was derived using the whole
data set in order to be more generalized while the actual trees were
established by using training data, i.e. 75% of the whole data set.
Table 4
The indices and coefficients of the PFs for the different growth stages of spring wheat
in Mashhad region.

CWPF Growth stagesa

1 2 3 4

Jensen (k) 0.11 (0.02)b 0.34 (0.05) 0.43 (0.04) 0.17 (0.06)
Minhas (d) 0.25 (0.04) 0.62 (0.10) 0.73 (0.07) 0.31 (0.10)
M-Stewart (Ky) 0.11 (0.03) 0.40 (0.06) 0.43 (0.05) 0.18 (0.06)
Nairizi (c) 0.19 (0.02) 0.26 (0.03) 0.40 (0.02) 0.16 (0.01)

a The growth stages are identical with the Table 2. M-Stewart: modified Stewart.
b Numbers in parenthesis are the standard deviation among the derived coeffi-

cients for four times deriving procedure.

Fig. 1. Schematic structure of the derived DT- PF applied to spring wheat. EC: irrigation w
different growth stages (Table 2). The values inside the leaves are the predicted GY (g m
Therefore, there are some minor differences between the topology
of this tree and the 4 individual trees that were derived. The first
and the second levels were divided in regard to the relative IW
of the third and the second growth stages, respectively. The
branching value of the nods in the first level is 0.45 of relative
IW at heading and flowering (third growth stage) while 0.52 and
0.87 of IW at stem elongation and booting (second growth stage)
were the splitting values at the second level of the left and right
branches, respectively. The rest of the predictors (i.e. EC, IW at first
and forth growth stages) appeared in the next layers. The EC in the
fourth and fifth levels of the right main branch was available at
several nodes, but the IW at the first and at the end of the growing
seasons occupied all of the nodes in the same position of the left
main branch. The magnitude of branching of EC decreased moving
from the root toward the leaves of the tree.

Results of the NN-PF sensitivity analysis are presented in Fig. 2.
The result was calculated upon training data set of NN-PFs.
Columns show the mean of the sensitivity for the four repeated
derivations including the standard deviation. The IW at the third
level had the highest impact on GY while the salinity had the
lowest effect on the modeling.
3.2. Model evaluation

The evaluation statistics and the scatter plots, measured versus
estimated GY, of the PFs are presented in Table 5 and Fig. 3, respec-
tively. The first three PFs were derived using the ET information of
the plots from the first cropping year experiment while the last
three were developed using IW values from combination of the
plots of both cropping years. Overall, the performance of the de-
rived PFs using both years of data, i.e. IW-based PFs, are better than
those which were derived only using data of first year, i.e. ET-based
PFs. Among the PFs, which were established using IW information,
the best result was due to the NN-PF, with RMSE equal to
44.27 g m�2, while the performance of the Jensen-PF, with RMSE
equal to 52.64 g m�2, was better than the rest of well-known PFs
that were derived using ET data from the individual plots. The high
r value of all PFs, ranged from 0.85 to 0.90, was in agreement with
the linear trends shown in the scattered plots of Fig. 3. The MBE
values were low indicating there was no systematic over/under
estimation on any of PFs (See Fig. 3). This was considered as a fairly
accurate performance of the PFs in general. However, the same pat-
tern of error was recognizable in ET-based PFs; overestimation for
some plots started around 200 g m�2 and continued for higher GY
values (Fig. 3).
ater salinity (dS m�1); IW1, IW2, IW3, IW4: relative irrigation water requirement at
�2).
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Fig. 2. Sensitivity of the grain yield (GY) to each input predictor calculated using
the training data set of NN-PF. IW1, IW2, IW3 and IW4 are the applied irrigation
water at different growth stages (Table 2) and EC is the irrigation water salinity.

Table 5
Evaluation statistics for all of the PFs in test set.

PF Data Predictorsb RMSE (g m�2) MBE (g m�2) r

Jensen-PF S1 ETRel 52.64 5.22 0.87
Minhas-PF S1 ETRel 63.16 22.60 0.88
M-Stewart-

PFa
S1 ETRel 60.82 11.58 0.85

Nairizi-PF S1 + S2 IWRel 50.85 9.09 0.90
NN-PF S1 + S2 IWRel + EC 44.27 �2.99 0.92
DT-PF S1 + S2 IWRel + EC 60.02 9.56 0.86

a M-Stewart: modified Stewart. S1: first cropping season data; S2: second crop-
ping season data.

b ETRel: relative ET; IWRel: relative IW.
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Fig. 3. Scatter plots of measured versus estimated grain yield (GY) (g m�

A. Haghverdi et al. / Computers and Electronics in Agriculture 101 (2014) 68–75 73
4. Discussion

In general, the indices and coefficients at the beginning and the
end of the cropping season were lower than those at the middle
stages of the season. This trend was observed in PFs which used
either ET or IW as the input predictor. The priorities in the branch-
ing of the DT-PF (Fig. 1) and the result of sensitivity analysis for the
NN-PF (Fig. 2) were in agreement with the indices and coefficients
of regression-based PFs (Table 4). These findings reiterated the
findings of previous studies: the impact of water stress was most
keenly realized in winter wheat during the flowering/grain filling,
followed by stem elongation/booting (García del Moral et al., 2003;
Karam et al., 2009). The differences between the studies may be re-
lated to the differences in weather and soil from location to loca-
tion. Moreover, the variation of the indices and coefficients
during the season indirectly followed the routine shape of the crop
coefficient curve derived for spring wheat by López-Urrea et al.
(2009). They found that maximum ET was reached around May
25 and decreased during the ripening period as the growing season
advanced. According to the Zadok’s growth stages in Table 2, the
middle stages began with stem elongation and were ended with
flowering. Reduction in the GY around flowering by water stress
may be due to the declining spike and spikelet number and the
fecundity of remaining spikelets (Karam et al., 2009).

An earlier assessment of well-known PFs by Igbadun et al.
(2007) found better performance of the Jensen-PF over the Minhas
and modified-Stewart PFs in an irrigated maize crop. The present
study also showed better performance of the Jensen PF for spring
wheat. Among the regression-based PFs, however, the Nairizi-PF
worked slightly better than the others. The better result of Nai-
rizi-PF could be related to the number and distribution of the data
that was used to derive it. In other words, Nairizi-PF was derived
based on data from both cropping years; whereas the other func-
tions just used the information from the first year. The higher num-
ber of plots means more information about the experimental
300 400 500 600 0 100 200 300 400 500 600

Minhas

0 400 500 600 700

GY (g m-2)

0 100 200 300 400 500 600 700

Nairizi

Actual GY (g m-2)

2) for all of the PFs in test sets for spring wheat in Mashhad region.



Fig. 4. Pareto chart indicating the level of importance of the input predictors and the possible interactions for the experiment of the first cropping year. IW1, IW2, IW3 and
IW4 are the irrigation amount at different growth stages (Table 2) and EC is the irrigation water salinity (This figure was drawn using the trial version of Design-Expert 7
software (Stat-Ease, Minneapolis, MN)).
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domain and thus a more accurately derived PF. Performance of Nai-
rizi-PF also showed IW can be used as a valid input predictor. This
finding may be valid only if the over irrigation was eliminated by
accurate estimation of IW and therefore IW was close to ET.

NN-PF showed the highest accuracy, but DT-PF ranked fourth
among all six PFs. RMSE for relative grain yield value was 0.07
(=44.27 g m�2) for NN-PF, lower than the reported error by
Igbadun et al. (2007), i.e. RMSE for relative grain yield was equal
to 0.11 for Jensen, 0.20 for Minhas and 0.15 for M-Stewart. Dai
et al. (2011) recently introduced the NN as more accurate model
than multiple linear regression for modeling sunflower responses
to soil moisture and salinity. The better performance of NN-PF in
comparison with regression-PFs in this study, together with the re-
sult of Dai et al. (2011), implies that the NN could be used as a
reliable alternative option to regression for deriving the next gen-
eration of PFs. The fixed number of predictors is the most remark-
able handicap of the well-known regression-PFs that restrict their
application. In contrast, there is less limitation for choosing input
predictors when using NN-PF. This gives investigators the unique
opportunity to design future studies that apply different types of
input predictors. In fact, the better performance of NN-PF may be
related to the usefulness of EC as an input predictor.

Soil salinity was already used as an input predictor in PF studies
to represent the magnitude of salinity tension (e.g. Yang-Ren et al.,
2007). Identifying the accumulation of salt in root zones, however,
is not easy and requires time and costly equipment. In this study,
random monitoring of soil salinity at two different depths
(0–30 cm and 30–60 cm), during the second season in plots under
various salinity stress showed there was a high positive correla-
tion, r = 0.95, between the soil salinity and EC. Although less
pronounced, the correlation between the quantities of salt (i.e. EC
multiply by the total irrigation throughout the season after apply-
ing saline water) and accumulated salt in root zone was positive as
well, r = 0.69. As a result, the hypothesis of considering EC instead
of soil salinity as an input predictor is logically acceptable. Indeed,
the EC directly affects the salt accumulation in the root zone which
inhibits water uptake by roots. For soils with long term salinity
problems, considering EC as an input predictor may be problematic
because it does not reflect the initial salinity distribution within
the root zone hence it is not able to represent the accumulated
salts in the root zone. It should be mentioned that the study field
had no initial salinity problems; therefore, this subject was not
an issue in this research. Due to the flexible structure of NN-PF,
however, it seems that including initial soil salinity as an addi-
tional input predictor on top of IW and EC can help one to derive
the PF for soils which are struggling with long term salinity prob-
lem. Further investigation is needed to evaluate the effectiveness
of initial soil salinity as an input predictor.

Although the black box nature of NN-PF did not reveal any
information, the white box nature of DT-PF was useful in interpret-
ing the role of each predictor. In the left branch of DT-PF (Fig. 1),
water stress was the prevailing tension reducing GY; hence, the
presence of EC as an input attribute was reduced to a single node
even with a high salinity value; i.e. 9.31 dS m�1. As expected, in
the right branch of the tree with low water stress, EC as a predictor
was more important. It could be stated that the role of salinity as
an input predictor in the structure of PF in the treatments with
high water stress was not as important as the treatments with
moderate and low water stress. In fact the high water stress
seemed to be more effective in reducing yield than salinity. The
branching value of salinity in the left part of the tree was higher
than the threshold salinity of wheat, 6 dS m�1 (Maas and Grattan,
1999), which may be due to the progressive effect of water stress
as a predominant factor. However, based on Gowing et al. (2009),
the idea of existing threshold salinity for crops by which the yield
remains constant may be abandoned. The presence of some nodes
that used very low amounts of salinity, although in less critical
lower branches of the right part of the tree, may support this idea.

Reasonable accuracy of the derived PFs in this study may be
related to the high number of observations as a result of using re-
sponse surface methodology instead of traditional experimental
designs. Discarding the replications provided this opportunity to
examine more pair points in the experimental space of salinity
and DI. Although discussion about statistical aspects of the adopted
response surface design is out of the scope of current research,
Fig. 4 supports the sparsity of the effect principle and, therefore,
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the statistical validity of the un-replicated designs that were estab-
lished. Indeed, Fig. 4 shows the pareto chart of the t-value of the
effects, i.e. effects of predictors and their possible interactions,
based on the result of the first cropping year. It also contains two
t-limits (i.e. the t-limit and Bonferroni adjusted t-limit) as refer-
ence points to judge the significances of effects. In this figure, all
of the higher order effects are below the Bonferroni limit and t-Va-
lue limit, meaning they were not likely to be significant at the 5%
risk level.
5. Conclusion

Decision Tree (DT) and Neural Network (NN) methods were em-
ployed to estimate spring wheat grain yield (GY) under simulta-
neous salinity and water stress. These Data Mining (DM)
methods were compared with four well known production func-
tions (PFs) (i.e. Nairizi, Jensen, Minhas and M-Stewart). The perfor-
mance of the NN-PF was better than the other PFs. The ability to
introduce new input predictors is an important advantage of
DM-based PFs over the existing well-known regression-based
PFs. Also, utilizing response surface methodology instead of tradi-
tional experimental design, provides an opportunity to employ
un-replicated but statistically valid designs in a manner that allows
for a greater range of input variables with limited plot space. This is
especially important because multifactor NNs require extensive
data sets. In addition, evapotranspiration (ET) and soil salinity,
which are difficult to measure, could be replaced with irrigation
water (IW) and irrigation water salinity (EC) as more easily
collected PF predictors with reasonable accuracy. However, more
investigation is needed to confirm the usefulness of this replace-
ment under different initial and boundary conditions.
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