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Efficient irrigation management of urban landscapes is critical in arid/semi-arid environments and depends on
the reliable estimation of reference evapotranspiration (ETo). However, the available measured climatic data in
urban areas are typically insufficient to use the standard Penman-Monteith for ETo estimation. Therefore,
smart landscape irrigation controllers often use temperature-based ETo models for autonomous irrigation
scheduling. This study focuses on developing deep learning temperature-based ETo models and comparing
their performance with widely used empirical temperature-based models, including FAO Blaney & Criddle
(BC), and Hargreaves & Samani (HS). We also developed a simple free and easy-to-access tool called DeepET
for ETo estimation using the best-performing deep learningmodels developed in this study. Four artificial neural
network (ANN)models were developed using rawweather data as inputs and the reconstructed signal obtained
from the wavelet transform as inputs. In addition, long short-term memory (LSTM) recurrent neural network
(NN) and one-dimensional convolution neural network (CNN)models were developed. A total of 101 active Cal-
ifornia Irrigation Management Information System (CIMIS) weather stations were selected for this study, with
>725,000 data points expanding from 1985 to 2019. The performance of the models was evaluated against the
standard CIMIS ETo.Whenevaluated at the independent sites, the temperature-basedDL (Deep Learning)models
showed 15–20% lowermean absolute error values than the calibrated HSmodel. No improvement in the perfor-
mance of the ANN models was observed using reconstructed signals obtained from the wavelet transform. Our
study suggests that DL models offer a promising alternative for more accurate estimations of ETo in urban
areas using only temperature as input. The DeepET can be accessed from the Haghverdi Water Management
Group website: http://www. ucrwater.com/software-and-tools.html.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The FAO-56 Penman-Monteith is the accepted standardizedmethod
to estimate the reference evapotranspiration, ETo (Allen et al., 2005). It
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accounts for both energy and mass transfer processes to provide a
reliable estimation of ETo. However, it requires a wide range of
accurate meteorological data such as air temperature, humidity, solar
radiation, and wind speed. Therefore, its implementation in data
scarce situations, such as landscape irrigation management in urban
areas, is challenging and limited. Promising results and significant
water savings have been reported for landscape irrigation using smart
evapotranspiration-based controllers with on-site weather sensors
(Cardenas et al., 2021; Serena et al., 2020). These irrigation products
often employ temperature-based ETo equations in their scheduling
algorithms due to the high cost of installing and maintaining a
complete weather station (Davis and Dukes, 2010). Furthermore, for
smart controllers that rely on interpolated ETo for irrigation
scheduling, air temperature data is widely available and spatially
interpolated more accurately than other weather parameters
(Temesgen et al., 2005).

Various studies have evaluated temperature-based ETo models
(Djaman et al., 2015; Hope and Evans, 1993; Liu et al., 2017;
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Muhammad et al., 2019; Muniandy et al., 2016; Tabari et al., 2013; Xu
and Singh, 2001). In California, data from CIMIS (California Irrigation
Management Information System) stations have been widely used to
evaluate the suitability of empirical temperature-based ETo equations
(Hargreaves and Allen, 2003; Hope and Evans, 1993; Temesgen et al.,
2005). Recent multiyear turfgrass field irrigation research trials in
Southern and Central California revealed accurate estimation of ETo by
the Weathermatic SL4800 smart irrigation controller using the
Hargreaves and Samani equation (Hargreaves and Samani, 1985)
compared to CIMIS ETo (Haghverdi et al., 2021a, 2021b). However, the
performance of ETo estimation methods varies with climate and data
availability (Djaman et al., 2015), and data requirements vary among
models. Therefore, it is vital to evaluate temperature-based ETo
measurement methods and develop regional/site-specific calibration
equations, which can help users determine the best approach depend-
ing on the availability of data and climate conditions (Kukal et al.,
2020; Long et al., 2013).

Machine learning methods have also been proposed to estimate ETo
based on temperature and solar radiation data (Fan et al., 2018; Kisi and
Alizamir, 2018). Algorithms such as artificial neural networks (ANN)
and a combination of wavelet analysis/transform (WA) with ANN, re-
ferred to asWA-ANNs, have been explored in various hydrological stud-
ies (Adamala, 2018; Adamowski and Sun, 2010; Chen et al., 2020;
Evrendilek, 2014; Falamarzi et al., 2014; Kisi and Alizamir, 2018;
Partal, 2009; Traore et al., 2016, 2010). The WA-ANN was introduced
by (Zhang and Benveniste, 1992) as an alternative approach to
feedforward ANNs to denoise input data. Wavelets can also substitute
for activation functions in feedforward ANNs, referred to as WNNs
(Alexandridis and Zapranis, 2013). More recently, deep learning (DL)
methods have been used for time series predictions (Han et al., 2021)
and have shown better performance compared to other ML methods.
Saggi and Jain (2019) found a superior estimation of ETo with a deep
feedforward ANN compared to other models such as the gradient
boostingmachine, the generalized linear model, and the random forest.
In a study done in the Northeast plain of China, DL models such as tem-
poral convolution neural network (CNN) and long short-term memory
(LSTM) NNwere found to outperform other temperature-based empir-
ical models (Chen et al., 2020). The use of one-dimensional CNNmodels
(1D CNN) for sequential or time-series data, such as ETo, has
demonstrated improved performance (Ferreira and da Cunha, 2020).
Among these methods, hybrid CNN and LSTM models have also been
used for ETo estimation (Sharma et al., 2022; Yin et al., 2020).

CIMIS data have been used in multiple studies for ETo estimations
using ANN, WA-based, and DL models (Cobaner, 2013; Kişi, 2010;
Partal, 2009; Sowmya et al., 2020). However,models are typically devel-
oped using ETo data obtained from a limited number of sites and tested
on the same sites. For instance, Long et al. (2022) recently demonstrated
the applicability of the ANN and LSTMmodels for ETo estimation using
data from two weather stations in China and suggested that these
models should be explored over more sites with varying climate condi-
tions. Thus, a more extensive analysis of such methods is needed to
evaluate the ability to produce generalized results over large regions.
Furthermore, with some exceptions, little work has been reported on
the use of LSTM and CNN for ETo estimation. A particular focus on
temperature-basedmodels is required to assess their utility in urban ir-
rigation management.

Themain objectives of this study are (I) to evaluate the performance
of two temperature-based empirical ETo models, (II) to develop
calibration equations for the empirical temperature-based models for
all climate divisions in CA, (III) to develop and evaluate the accuracy
of deep learning approaches (ANN, WA-ANN, LSTM, and 1D CNN) for
ETo estimations using different sets of input data, and (IV) validation
of the empirical and DL ETo models developed in this study.
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2. Material and methods

2.1. Study region and data sources

This study was carried out in California using data obtained from
automated CIMIS weather stations managed by the California Depart-
ment of Water Resources (https://cimis.water.ca.gov/). In general, ETo
rates peak during the summer months and are low during winter
under the Mediterranean climate of California, while precipitation is
restricted primarily to winter and spring. Annual normal (1991–2020)
minimum, maximum, and average temperatures vary from −6.8 to
18 °C, 2.5 to 32.8 °C, and − 1.75 to 24.7 °C, respectively. Statewide
annual precipitation is about 56 cm. A total of 101 active CIMIS stations
with available data ranging from 1985 to 2019 were selected. Approxi-
mately 50% of the stations had 25 to 35 years of data, and the remaining
stations had at least ten years of data to ensure that a wide range of
weather conditions and drought events were considered. Fig. 1 shows
the locations of the selected CIMIS stations within the California aridity
index map. The distribution of the weather parameters across the
selected weather stations is shown in Fig. 2. Data quality was checked
before modeling, and recordings with missing data were removed,
and wind speed was limited between 0 and 20 m s−1.

The aridity index, which can quantify precipitation availability over
atmospheric water demand, was created following the classification
recommended by the United Nations Environmental Programme
(UNEP) and using the CGIAR-CSI Global-Aridity Database (Trabucco
and Zomer, 2018). Most of the selected CIMIS stations belonged to the
arid (n = 48) and semi-arid (n = 39) classes, while 4, 9, and 1 CIMIS
stations belonged to hyper-arid, dry sub-humid, and humid classes, re-
spectively. The spatial dataset of the seven climate divisions of California
was obtained from the National Climatic Data Center- National Oceanic
and Atmospheric Administration (NCDC-NOAA). The climate division
data were used to perform a region-specific performance assessment
of the models evaluated in this study.

2.2. Temperature-based empirical ETo models

The following is a summary of the temperature-based empirical
models used in this study.We used Python programming language ver-
sion 3.8 (http://www.python.org) to calculate ETo for all selected CIMIS
stations. Furthermore, linear calibration equations were developed for
the two regression-based models using the daily ETo data for each
climate division.

The FAO24 – Blaney and Criddlemethod, BC (Allen and Pruitt, 1991;
Donald Frevert et al., 1983; Doorenbos and Pruitt, 1977) is a modified
version of the BC equation that includes correction factors to adjust for
local weather or climatic conditions.

ETo ¼ Aþ B p 0:46Ta þ 8:13ð Þ½ � ð1Þ

A ¼ 0:0043RHmin−
n
N
−1:41 ð2Þ

B ¼ 0:82−0:0041 RHminð Þ þ 1:07
n
N

� �
þ 0:066 Udð Þ

−0:006 RHminð Þ n
N

� �
− 0:0006 RHminð Þ Udð Þ ð3Þ

where RHmin is the dailyminimum relative humidity, Ud is the daytime
wind speedmeasured at height 2 m, and n/N is the mean ratio of actual

to possible sunshine hours that can be obtained from solar radiation es-
timates as:

n
N

¼ 2
RS

Ra

� �
−0:5 ð4Þ

https://cimis.water.ca.gov/
http://www.python.org


Fig. 1. Distribution of the CIMIS stations evaluated in this study across the state of California. The aridity index values were obtained from the CGIAR-CSI Global-Aridity Database, and the
classes were mapped based on the United Nations Environmental Programme (UNEP) recommendations.
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where Ra is the extraterrestrial radiation expressed in equivalent
evaporation units [mm d−1] and Rs is the global solar radiation at the
surface [mm d−1]. Extraterrestrial solar radiation (Ra) was calculated
following the equations given by Allen et al. (1998), using the python
library ‘pyETo’ (https://pyeto.readthedocs.io/en/latest/index.html).
Daytime wind speed (Ud) was obtained by multiplying the 24-h mea-
surements of wind speed by 1.3 (Doorenbos and Pruitt, 1977).

The Hargreaves and Samani method, HS (Hargreaves and Samani,
1985), uses air temperature and estimated extraterrestrial solar radia-
tion for a given latitude and day to estimate ETo.

ETo ¼ 0:0023Ra Ta
�C þ 17:8ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmax � Tmin

p
ð5Þ

where Tmax � Tmin is the difference between the daily maximum and
minimum air temperatures [°C].

2.3. Deep learning models

In real-world applications,when all the necessary input variables are
available, the application of FAO-56 Penman-Monteith as the standard
physically based model is suggested for estimating ETo. Therefore, the
main focus of this study was to develop and evaluate temperature-
based deep learning ETo models. However, DL models with extra input
variables, including relative humidity (RH) and wind speed (U) were
developed to compare the maximum achievable performance of each
DL approach.

2.3.1. Artificial neural network (ANN) models
Two feedforward backpropagation ANN models were developed

with different combinations of input variables (Fig. 3). One model
used several inputs, including Tmin, Tmax, Ta, RH, U, and Ra, while the
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other model only had Tmin, Tmax, Ta, and Ra as inputs. A total of
725,849 data points from 101 CIMIS stations were divided into five
folds such that four folds were used for training and the remaining
group (∼20% of data) for testing the models. In addition, 12.5% of the
training set was used as cross-validation for training of the DL models,
helping to terminate the training and avoid overfitting. The maximum
epoch (i.e., one cycle of a complete presentation of the training data
set through the learning process) was set to 1000; however, early-
stopping was implemented when the loss function did not improve
for 20 consecutive epochs. By early-stopping the training of the model,
the complexity of the model can be controlled, improving generaliza-
tion (Yao et al., 2007). The model development process was repeated
five times to ensure that data from all CIMIS stations had been in the
test set. This approach assessed the generalizability of the models, as
data from the same CIMIS station were never used in the training and
test set simultaneously. The ‘adam’ optimizer function (Kingma and
Ba, 2015) was used to train the feedforward ANN models, and the best
weights and biaseswere automatically loaded for testing. The activation
functions were ‘ReLu’ and ‘linear’ for the hidden and output layers, re-
spectively. The Python library TensorFlow (TensorFlow Developers,
2021) was utilized to develop the ANN models.

The same steps as aforementioned were followed to develop
WA-ANN models using the reconstructed signals obtained from the
wavelet transform. Discrete wavelet transform (DWT) was applied to
decompose the climatic time series of input predictors by passing
through a series of high-pass and low-pass filters, separated at different
scales. The Daubechies (db10) family of wavelets with decomposition a
level of 10 (2–4–8–16–32–64–128–256–512–1024)was used. The orig-
inal time series were decomposed into series of approximation(A) and
detail(D) subseries. The correlation coefficient was computed between
the ETo data series and the decomposed subseries. The subseries with

https://pyeto.readthedocs.io/en/latest/index.html


Fig. 2. Histograms of the meteorological variables (a) and availability of the data across CIMIS stations used in this study (b).
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correlation coefficient values greater than ±0.1 were recognized as
effective (Partal, 2009). The effective wavelet subseries were used to
reconstruct the time series used as inputs to theANNmodel. The Python
library Pywavelets (Lee et al., 2019) was used for this analysis.

2.3.2. Long short-term memory (LSTM) and convolutional neural network
(1D CNN) models

Long short-term memory (LSTM) layers are a type of recurrent unit
often used in deep learning algorithms. Thememory element present in
its structure enables it to detect long-term dependencies of sequential
tasks (Hochreiter and Schmidhuber, 1997), resulting in improved per-
formance when dealing with time-series problems. Since the output of
an LSTM unit at time step t is a function of all the inputs from the previ-
ous time step, it could be said that it has a form of memory. The LSTM
unit preserves an internal state (long and short-term) across time
steps and produces an output.
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An LSTM unit consists of three gates that serve as controllers, as
shown in Fig. 4(a):

• Forget Gate (ft) - controlswhich parts of the long-term state should be
forgotten.

• Input Gate (it)- Controlswhich parts of the g(t) should be added to the
long-term state.

• Output Gate (ot) - controls if/when the remembered value is allowed
to pass from the unit.

In Fig. 4(a), ‘*’ and ‘+’ are the element-wise multiplication and addi-
tion, respectively. Activation functions are sigmoid and hyperbolic tan-
gent (tanh), and g(t) represents candidate context value. The by values
are the output from the unit; the x values are the input to the unit,
and c values are the context values. The output and context values al-
ways feed their output to the next time step, and the context values
allow the network to maintain the state between units.



Fig. 3. The architecture of the feed-forward backpropagation neural networkmodels that were developed in this study. Tmin, Tmax, and Ta are the daily minimum,maximum, andmean air
temperature [°C], respectively; RH: Relative Humidity [%]; U: daily mean windspeed [m s−1]; Ra: extraterrestrial solar radiation [mm d−1].
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In short, an LSTM cell can learn to recognize a vital input (input
gate), store it in the long-term state, preserve it as long as it is needed
(forget gate), and extract it whenever necessary. The LSTMNN architec-
ture used in this study consisted of the input layer, a hidden layer with
48 LSTM units, another dense hidden layer with 24 units and ReLU
activation function, followed by the output layer.

CNN models are generally applied for image processing and are
widely known for extracting relevant features. However, one-
dimensional convolutional filters (1D CNN) are used to analyze time
series (Li et al., 2017). These filters slide over the input data to capture
possible patterns in the time series. The main distinction of this tech-
nique over previous ANN models is that 1D CNN extracts features of a
signal by considering local information rather than the entire signal in
each network layer. The 1D CNN architecture used in this study
consisted of the input layer, a hidden layer with 48 convolution filters
(kernel size =3), a max-pooling layer (size = 2), a dense layer with
24 units and ReLU activation function, as shown in Fig. 4(b).

The input of the LSTMor CNN layermust be 3-dimensional following
the format [samples, timesteps, features]. The timestep is equal to
30 days, the sample is equal to a row in a dataset (e.g., an input and
output sequence for a time series), and the feature is input in the
dataset. Therefore, the multivariate time series in this study were split
into multiple samples where each sample has a specified number of
time steps, and the output is ETo at the last step. Thus, the input data
dimension was [samples. 30, features]. The adam optimizer function
(Kingma and Ba, 2015) was used to train the DL models and the best
weights and biases were automatically loaded for testing. The Python
library TensorFlow (TensorFlow Developers, 2021) was utilized to de-
velop the ANN models. Two different combinations of input variables
were used for each method, resulting in four DL models evaluated in
this study. One model used inputs Tmin, Tmax, Ta, RH, U, and Ra, while
the other model only had Tmin, Tmax, Ta, and Ra as input, as described
in the previous section.

2.4. Performance assessment

The performance of the models was evaluated against CIMIS ETo
data, a modified version of the Penman equation (Pruitt and
Doorenbos, 1977) that uses a wind function developed at the
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University of California, Davis, and unique cloud factor values for each
station location. Five statistical indices, including the root mean
squared error (RMSE), mean absolute error (MAE), mean bias error
(MBE), Nash-Sutcliffe Efficiency (NSE), and coefficient of determination
(R2), were used to quantify and compare the performance of the
temperature-based models.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
Ei � Mið Þ2

s
ð6Þ

MAE ¼ 1
n
∑
n

i¼1
Ei � Mij j ð7Þ

MBE ¼ 1
n
∑
n

i¼1
Ei � Mið Þ ð8Þ

NSE ¼ 1 �
∑
n

i¼1
Mi � Eið Þ2

∑
n

i¼1
Ei � E
� �2 ð9Þ

R2 ¼ ∑n
i¼1 Ei−EÞðMi−M

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Ei−E
� �2

∑n
i¼1 Mi−M

� �2q
0B@

1CA
2

ð10Þ

where E andM are the estimated andmeasured ETo, respectively; E and
M are the mean estimated and measured ETo, respectively; and n is the
total number of data points for each model. Monthly and annual error
metrics were also computed to understand the performance of the
models on a temporal scale. Linear regression calibration equations
were also presented using long-term data from 101 CIMIS stations, as
well as the stations from each climate division. Long-term ETo data
were interpolated using the inverse distance weighting approach in
ArcGIS Pro 2.8.2 (ESRI Inc.) to assess the spatial distribution of the ETo
estimated by the models evaluated in this study.

Furthermore, the performance of these models was evaluated on 15
independent CIMIS stations during an independent period from 2020 to
2021 (Fig. 1) to validate the results.



Fig. 4. A Long Short-Term Memory (LSTM) unit (a) and architecture of the 1D Convolutional Neural Network (CNN) used in this study (b).
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3. Results & discussion

3.1. Overall performance of ETo models

Table 1 summarizes the overall performance statistics of all the em-
pirical regression and ANN-based ETo models evaluated in this study.
Fig. 5 shows the scatter plots of the ETo estimated by the models
against CIMIS ETo. The HS model (RMSE = 0.78 mm d−1; MAE =
0.56 mm d−1) showed better performance among the empirical
temperature-based models and resulted in a low magnitude of bias
(MBE=−0.07mmd−1). Kukal et al. (2020) reported the underestima-
tion of ETo by the HS model in the arid, semi-arid, and dry subhumid
66
sites of the US high plains region, while the overestimation of ETo by
the HS model was reported in the Sahelian climate by (Djaman et al.,
2015). The BC model (RMSE = 0.91 mm d−1; MAE = 0.67 mm d−1),
however resulted in overestimation of ETo with MBE of 0.27 mm d-1.
HS model has an NSE and R2 of 0.85 and 0.86, whereas it was 0.80
and 0.91, respectively for the BC model.

The ANNmodels can be ranked as ANN_all > ANN_T >WA-ANN_all
> WA-ANN_T based on their performance. They showed high accuracy
and reliability (generalizability), since data from the same CIMIS station
was never present in the training and test set simultaneously. The
ANN_all model (inputs: Tmin, Tmax, Ta, Ra, RH, U) showed the best
performance (RMSE = 0.51 mm d−1; MAE = 0.35 mm d−1) followed



Table 1
Overall performance of the temperature-based ETo models compared to CIMIS ETo.

Models Inputs RMSE MAE MBE NSE R2 Linear eq

BC Ta, RH, Ud 0.91 0.67 0.27 0.80 0.91 y = 0.76× + 0.74
HS Tmin, Tmax, Ta, Ra 0.78 0.56 −0.07 0.85 0.86 y = 0.97× + 0.19
ANN_all Tmin, Tmax, Ta, Ra, RH, U 0.51 0.35 0.00 0.94 0.94 –
ANN_T Tmin, Tmax, Ta, Ra 0.69 0.49 0.00 0.88 0.88 –
WA-ANN_all Tmin, Tmax, Ta, Ra, RH, U 0.96 0.70 −0.01 0.78 0.78 –
WA-ANN_T Tmin, Tmax, Ta, Ra 0.99 0.73 0.00 0.77 0.77 –
LSTM_all Tmin, Tmax, Ta, Ra, RH, U 0.44 0.30 −0.01 0.95 0.95 –
LSTM_T Tmin, Tmax, Ta, Ra 0.67 0.47 0.02 0.89 0.89 –
CNN_all Tmin, Tmax, Ta, Ra, RH, U 0.46 0.32 0.00 0.95 0.95 –
CNN_T Tmin, Tmax, Ta, Ra 0.68 0.48 0.05 0.89 0.89 –

BC: Blaney & Criddle FAO, HS: Hargreaves & Samani, ANN_all: ANNmodel with Tmin, Tmax, Ta, Ra, RH, and U as inputs, WA-ANN_all: Wavelet transform ANNmodel with Tmin, Tmax, Ta, Ra,
RH, and U as inputs, ANN_T: ANNmodel with Tmin, Tmax, Ta, and Ra as inputs, WA-ANN_T: wavelet transform ANNmodel with Tmin, Tmax, Ta, and Ra as inputs. LSTM_all: Long Short-Term
Memory Recurrent Neural Networkwith 6 inputs, LSTM_T: 4 inputs, CNN_all: Convolutional neural networkwith 6 inputs, CNN_T: CNNmodel with 4 inputs, Tmin, Tmax, and Ta are in [°C],
Relative Humidity, RH [%], daily average windspeed, U [m s−1], Extraterrestrial solar radiation, Ra [mm d−1].
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by ANN-T (RMSE = 0.69 mm d−1; MAE = 0.49 mm d−1). WA-ANN
models that used reconstructed signals obtained from the wavelet
transform resulted in 69% higher error than ANN models that used
raw data as input (Table 1). MBE values were negligible in all ANN
models, indicating that there was no substantial over or underestima-
tion of ETo, as shown in Fig. 5. The NSE and R2 values ranged from 0.77
for theWA-ANN_T to 0.94 for the ANN_all models. Models using recon-
structed signal obtained from thewavelet transform performed reason-
ably well with WA-ANN_all (RMSE = 0.96 mm d−1; MAE = 0.70 mm
d−1) performing slightly better than WA-ANN_T (RMSE = 0.99 mm
d−1; MAE = 0.73 mm d−1). Using the raw input data was a better
approach than using the reconstructed signal in our study. This result
agrees with the findings of (Falamarzi et al., 2014) but differs from the
study by (Kisi and Alizamir, 2018), where ANN models with wavelet
transform inputs did not have considerable differences from themodels
developed using raw inputs.

The DL models can be ranked as LSTM_all > CNN_all >
LSTM_T > CNN_T based on their performance. They showed high
reliability (generalization ability), since data from the same CIMIS sta-
tion was never simultaneously present in the training and test set. The
LSTM_all model (inputs: Tmin, Tmax, Ta, Ra, RH, U) showed the best
Fig. 5. Scatterplots of the CIMIS ETo versus estimated daily ETo by the 10 temperature-based em
Blaney & Criddle FAO, HS: Hargreaves & Samani, ANN_all: ANNmodel with Tmin, Tmax, Ta, Ra, RH
and U as inputs, ANN_T: ANN model with Tmin, Tmax, Ta, and Ra as inputs, WA-ANN_T: wavele
Memory Recurrent Neural Network with 6 inputs, LSTM_T: 4 inputs, CNN_all: Convolutional n
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performance (RMSE = 0.44 mm d−1; MAE = 0.30 mm d−1) followed
by CNN-all (RMSE = 0.46 mm d−1; MAE = 0.32 mm d−1). Both the
LSTM and CNN models had comparable performance. MBE values
were negligible in all ANNmodels, indicating that therewas no substan-
tial over- or underestimation of ETo, as shown in Fig. 5. NSE and R2

ranged from 0.89 for the models with four inputs to 0.95 for those
using all six inputs.

Overall, the DL models with relative humidity, wind speed, air
temperature, and extraterrestrial solar radiation as inputs surpassed
other models in performance, such that LSTM_all >CNN_all >ANN_all.
This was followed by models using air temperature and solar radiation
as inputs such that LSTM_T > CNN_T > ANN_T > HS. All DL models
outperformed the HS model with similar input variables. There was a
14%, 12%, and 11% decrease in RMSE for the LSTM_T, CNN_T, and
ANN_T models, respectively, compared to HS. Better performance in
estimating ETo by ANN and WA-ANN models compared to HS was
reported in the literature (Adamala, 2018; Traore et al., 2010). The supe-
rior performance of the LSTM and 1D CNN models agrees with the
studies (Chen et al., 2020; Ferreira and da Cunha, 2020) where using a
sequence of input variables (past information) to train the models re-
sulted in an improved estimation of ETo.
pirical and DL models evaluated in this study. The dashed orange line is the 1:1 line. BC:
, and U as inputs, WA-ANN_all: Wavelet transform ANNmodel with Tmin, Tmax, Ta, Ra, RH,
t transform ANN model with Tmin, Tmax, Ta, and Ra as inputs, LSTM_all: Long Short-Term
eural network with 6 inputs, CNN_T: CNN with 4 inputs.
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3.2. Importance of input parameters

HSmodel can be regarded as a truly temperature-basedmodel since
extraterrestrial solar radiation can be estimated based on the location
and time of the year. Global solar radiation is known to be amore critical
parameter than relative humidity and wind speed in estimating
daily ETo, based on a machine learning study conducted in China
(Fan et al., 2018). However, daily ETo anomalies strongly correlate
with net radiation anomalies, relative humidity (RH), and cloud cover,
and less with average daily air temperature (Hidalgo et al., 2005). The
temperature difference used in the HS model is an indirect measure of
cloud cover and RH at a location (Hargreaves and Samani, 1985). Clear
sky conditions result in high maximum day temperatures and low
minimum night temperatures, whereas cloudy days result in relatively
lower maximum day temperatures and higher minimum night
temperatures.

In our study, the ANN_all model using relative humidity, wind
speed, air temperature, and extraterrestrial solar radiation resulted in
better performance (27% reduction in MAE) than ANN_T, based on
temperature and extraterrestrial solar radiation. However, ANN_all re-
quires more data, typically unavailable for ETo estimation by smart
controllers in residential areas. Many studies, with few exceptions, use
Rs as an input to temperature-based models instead of Ra. Since we
used Ra as an additional input for the temperature-based models,
which can be calculated following the equations given by Allen et al.
(1998), the temperature is the only measured input required for
temperature-based models developed in this study. Partal (2009) re-
ported no improvement in performance by the ANN and WA-ANN
models over the HS model. On the contrary, the ANN_T model in our
study resulted in a 14% reduction in MAE compared to the empirical
HS model derived from the same inputs.

Studies using DL models have reported great performance for ETo
estimation using solar radiation and temperature as inputs (Elbeltagi
et al., 2020; Sowmya et al., 2020). Sowmya et al. (2020) used deep
feedforward ANN models for ETo estimation at two CIMIS stations and
found that global solar radiation and air temperature can provide com-
parable accuracy to the models using a complete set of weather
variables as inputs. In our study however, DL models trained with a
complete set of variables resulted in better performance (∼35%
Fig. 6. Comparison between long-term year-round ETo obtained from CIMIS against the 10 tem
mean ETo and the shaded bands depict the standard deviation of ETo across all CIMIS stations.
model with Tmin, Tmax, Ta, Ra, RH, and U as inputs, WA-ANN_all: Wavelet transform ANN mod
Ra as inputs, WA-ANN_T: wavelet transform ANN model with Tmin, Tmax, Ta, and Ra as inputs,
inputs, CNN_all: Convolutional neural network with 6 inputs, CNN_T: CNN with 4 inputs.

68
reduction in MAE) than models using four inputs, although the
performance of DL models trained with four inputs was not substan-
tially lower. Therefore, temperature-based DL can be adopted to obtain
accurate ETo estimations for landscape irrigationmanagement by smart
weather-based irrigation controllers in data-scarce conditions in urban
settings.

3.3. Temporal analysis of the ETo models

Fig. 6 shows the daily mean and standard deviation of the estimated
ETo values throughout the year by the models evaluated in this study
versus the CIMIS ETo. The monthly performance statistics for each
model to estimate the monthly average ETo are shown in Tables 2 to
4. The HS (MAE: 0.10 to 0.31 mm d−1) model consistently performed
better throughout the year; however, had a high error in the spring
months relative to other months. The BC model (MAE: 0.08 to
0.76 mm d−1) model had a performance comparable to that of the HS
model in the winter and spring months but performed poorly in the
summer months, also evident in Fig. 6.

The ANN-based models can be ranked as ANN_all >
ANN_T >WA-ANN_all >WA-ANN_T. The ANNmodels showed negligi-
ble bias throughout the year, withMBE ranging from−0.23 to 0.13mm
d−1, whereas MBE ranged from−0.3 to 0.05 mmd−1 for the HS empir-
icalmodel (Tables 2 to 4).MAE values ranged from 0.05 to 0.14mmd−1

for the ANN models and from 0.13 to 0.29 mm d−1 for the WA-ANN
models. The better performance of the ANN models is also apparent in
Fig. 6, where the mean and standard deviation of the estimated ETo
very closely to that of the CIMIS ETo throughout the year.

The DL models can be ranked as LSTM_all > CNN_all >
LSTM_T > CNN_T. All models showed negligible bias throughout the
year, with MBE ranging from −0.06 to 0.08 mm d−1, better than the
empirical and other ML models evaluated in this study (Tables 2 to 4).
MAE values ranged from 0.04 to 0.11 mm d−1 for the LSTM models
and from 0.05 to 0.13 mm d−1 for the CNN models. The better
performance of the DL models is also apparent in Fig. 6, where the
mean and standard deviation of the estimated ETo match very closely
with that of the CIMIS ETo throughout the year.

The relationship of MAE and MBE with the annual average of the
meteorological parameters, including wind speed, was different. The
perature-based empirical and DL ETo models evaluated in this study. The solid lines show
DOY: day of the year. BC: Blaney & Criddle FAO, HS: Hargreaves & Samani, ANN_all: ANN
el with Tmin, Tmax, Ta, Ra, RH, and U as inputs, ANN_T: ANN model with Tmin, Tmax, Ta, and
LSTM_all: Long Short-Term Memory Recurrent Neural Network with 6 inputs, LSTM_T: 4



Table 2
Monthly root mean square error, RMSE (mm d−1) values for the temperature-based ETo equations evaluated in this study against CIMIS ETo.

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

BC 0.15 0.15 0.24 0.23 0.22 0.61 0.79 0.70 0.69 0.53 0.25 0.11
HS 0.13 0.13 0.20 0.34 0.33 0.24 0.16 0.12 0.13 0.13 0.15 0.12
ANN_all 0.08 0.08 0.09 0.14 0.16 0.13 0.13 0.16 0.09 0.10 0.07 0.08
ANN_T 0.11 0.11 0.15 0.16 0.16 0.16 0.13 0.13 0.12 0.15 0.14 0.14
WA-ANN_all 0.16 0.21 0.21 0.26 0.20 0.34 0.23 0.24 0.20 0.31 0.20 0.21
WA-ANN_T 0.16 0.22 0.22 0.26 0.23 0.33 0.21 0.25 0.23 0.31 0.21 0.21
LSTM_all 0.06 0.08 0.08 0.10 0.10 0.13 0.12 0.14 0.09 0.09 0.07 0.06
LSTM_T 0.21 0.15 0.15 0.14 0.14 0.13 0.13 0.13 0.13 0.12 0.14 0.14
CNN_all 0.08 0.08 0.08 0.10 0.11 0.14 0.11 0.14 0.09 0.09 0.07 0.07
CNN_T 0.19 0.13 0.16 0.15 0.16 0.15 0.14 0.12 0.13 0.12 0.14 0.13

BC: Blaney & Criddle FAO, HS: Hargreaves & Samani, ANN_all: ANNmodel with Tmin, Tmax, Ta, Ra, RH, and U as inputs, WA-ANN_all: Wavelet transform ANNmodel with Tmin, Tmax, Ta, Ra,
RH, and U as inputs, ANN_T: ANNmodel with Tmin, Tmax, Ta, and Ra as inputs, WA-ANN_T: wavelet transform ANNmodel with Tmin, Tmax, Ta, and Ra as inputs, LSTM_all: Long Short-Term
Memory Recurrent Neural Network with 6 inputs, LSTM_T: 4 inputs, CNN_all: Convolutional neural network with 6 inputs, CNN_T: CNN model with 4 inputs.

Table 3
Monthly mean absolute error, MAE (mm d−1) values for the temperature-based ETo equations evaluated in this study against CIMIS ETo.

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

BC 0.11 0.14 0.20 0.20 0.17 0.57 0.76 0.69 0.67 0.51 0.22 0.08
HS 0.11 0.10 0.16 0.31 0.28 0.21 0.13 0.10 0.11 0.11 0.11 0.10
ANN_all 0.06 0.06 0.07 0.10 0.14 0.10 0.10 0.12 0.08 0.08 0.06 0.05
ANN_T 0.08 0.09 0.11 0.12 0.12 0.13 0.10 0.09 0.09 0.11 0.10 0.10
WA-ANN_all 0.13 0.17 0.16 0.19 0.16 0.29 0.18 0.19 0.16 0.24 0.15 0.15
WA-ANN_T 0.14 0.18 0.16 0.20 0.18 0.27 0.17 0.20 0.18 0.23 0.15 0.15
LSTM_all 0.05 0.06 0.06 0.07 0.08 0.10 0.09 0.09 0.07 0.06 0.05 0.04
LSTM_T 0.11 0.10 0.11 0.11 0.11 0.09 0.10 0.09 0.11 0.10 0.09 0.10
CNN_all 0.06 0.06 0.06 0.08 0.09 0.10 0.09 0.09 0.07 0.06 0.05 0.05
CNN_T 0.11 0.10 0.11 0.11 0.13 0.11 0.11 0.09 0.11 0.09 0.10 0.09

BC: Blaney & Criddle FAO, HS: Hargreaves & Samani, ANN_all: ANNmodel with Tmin, Tmax, Ta, Ra, RH, and U as inputs, WA-ANN_all: Wavelet transform ANNmodel with Tmin, Tmax, Ta, Ra,
RH, and U as inputs, ANN_T: ANNmodel with Tmin, Tmax, Ta, and Ra as inputs, WA-ANN_T: wavelet transform ANNmodel with Tmin, Tmax, Ta, and Ra as inputs, LSTM_all: Long Short-Term
Memory Recurrent Neural Network with 6 inputs, LSTM_T: 4 inputs, CNN_all: Convolutional neural network with 6 inputs, CNN_T: CNN model with 4 inputs.
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HS model tended to have higher MAE with increasing wind speed,
vapor pressure deficit, and global solar radiation. Similarly, HS tends
to have a lower MAE with increasing relative humidity, whereas
these trends were not clear for the BC model. In the same way, HS
tend to underestimate ETo with increasing wind speed, vapor
pressure deficit, and global solar radiation, as indicated by the
decreasing MBE. Furthermore, with increasing relative humidity, HS
overestimates ETo, whereas MBE changed negligibly for the BC model.
The HS model tended to underestimate ETo under high wind
conditions (> 3 m s−1) and overestimate ETo under conditions of
high relative humidity (Allen et al., 1998), which is also supported by
our results. Reasons may include the continual mixing of warm, dry
air from overhead into the equilibrium boundary layer at night,
reducing the difference between the maximum and minimum air
temperature values (Temesgen et al., 1999).
Table 4
Monthly mean bias error, MBE (mm d−1) values for the temperature-based ETo equations eva

Model Jan Feb Mar Apr May Ju

BC −0.06 −0.10 −0.19 −0.17 0.11 0.5
HS 0.05 −0.02 −0.14 −0.30 −0.28 −
ANN_all 0.03 0.01 0.02 0.08 0.12 0.0
ANN_T −0.01 −0.02 0.01 −0.02 0.00 −
WA-ANN_all 0.06 0.02 0.01 0.01 −0.04 −
WA-ANN_T 0.05 0.03 0.02 −0.04 −0.08 −
LSTM_all 0.01 −0.01 −0.01 0.00 −0.01 −
LSTM_T −0.06 −0.06 0.01 0.02 0.04 0.0
CNN_all 0.04 0.01 0.01 0.02 0.02 −
CNN_T 0.01 0.01 0.04 0.03 0.07 0.0

BC: Blaney & Criddle FAO, HS: Hargreaves & Samani, ANN_all: ANNmodel with Tmin, Tmax, Ta, R
RH, and U as inputs, ANN_T: ANNmodel with Tmin, Tmax, Ta, and Ra as inputs, WA-ANN_T: wav
Memory Recurrent Neural Network with 6 inputs, LSTM_T: 4 inputs, CNN_all: Convolutional n
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3.4. Spatial analysis of ETo models

Table 5 summarizes the performance of themodels evaluated in this
study for each climate division. Also shown in Table 5 are the
coefficients (i.e., A and B) of BCfao averaged for each climate division.
The average values of these coefficients across all CIMIS stations were
A = −1.96 and B = 1.37. Based on the effects of weather variables on
annual ETo (Figs. 7 and 8), it can be expected that the performance of
temperature-based ETo equations will vary based on climate, i.e., more
arid regions will tend to have higher error. The southeast desert basin
had the highest error among all climate divisions as it is the aridest
region of the state (Table 5).

The HS model was the best performing empirical model in all cli-
mate divisions with the MAE ranging from 0.47 to 0.73 mm d−1.
Gabriela Arellano and Irmak (2016) reported an underestimation of
luated in this study against CIMIS ETo.

n Jul Aug Sep Oct Nov Dec

7 0.76 0.69 0.67 0.51 0.20 −0.04
0.18 −0.01 −0.02 0.04 −0.02 0.03 0.02
0 −0.05 −0.11 −0.03 −0.06 −0.02 0.02
0.05 0.02 −0.01 0.04 −0.05 −0.02 −0.05
0.23 −0.06 0.04 0.03 −0.20 −0.04 0.06
0.19 −0.01 0.07 0.06 −0.16 −0.03 0.04
0.04 −0.05 −0.05 −0.01 −0.03 −0.01 0.01
3 0.06 0.03 0.07 −0.02 −0.04 −0.06
0.02 −0.04 −0.06 −0.01 −0.03 −0.01 0.03
6 0.08 0.01 0.07 0.01 0.02 0.01

a, RH, and U as inputs, WA-ANN_all: Wavelet transform ANNmodel with Tmin, Tmax, Ta, Ra,
elet transform ANNmodel with Tmin, Tmax, Ta, and Ra as inputs, LSTM_all: Long Short-Term
eural network with 6 inputs, CNN_T: CNN model with 4 inputs.



Table 5
Climate-division-specific calibration equations and performance statistics for the temperature-based ETo equations and deep learning models evaluated in this study against CIMIS ETo.

Climate Division ET Model linear fit R2 NSE RMSE MAE MBE

401
(North Coast Drainage)
n = 10
A = −1.91
B = 1.29

BC y = 0.86× + 0.60 0.92 0.89 0.61 0.47 −0.13
HS y = 0.95× + 0.05 0.88 0.88 0.64 0.47 0.11
ANN_all 0.94 0.94 0.45 0.31 0
ANN_T 0.9 0.9 0.58 0.4 0.15
WA-ANN_all 0.77 0.75 0.91 0.67 0.22
WA-ANN_T 0.77 0.73 0.94 0.68 0.3
LSTM_all 0.95 0.95 0.39 0.28 −0.03
LSTM_T 0.91 0.9 0.56 0.39 0.12
CNN_all 0.95 0.95 0.42 0.3 0
CNN_T 0.91 0.9 0.58 0.41 0.16

402
(Sacramento Drainage)
n = 11
A = −1.97
B = 1.42

BC y = 0.77× + 0.59 0.94 0.83 0.9 0.67 0.38
HS y = 0.99× + 0.22 0.85 0.84 0.87 0.62 −0.19
ANN_all 0.95 0.95 0.47 0.32 0.03
ANN_T 0.88 0.88 0.75 0.53 −0.11
WA-ANN_all 0.8 0.8 0.98 0.71 −0.01
WA-ANN_T 0.78 0.78 1.02 0.73 0.02
LSTM_all 0.97 0.96 0.41 0.28 −0.01
LSTM_T 0.88 0.88 0.75 0.53 −0.08
CNN_all 0.96 0.96 0.44 0.31 0.01
CNN_T 0.88 0.88 0.75 0.54 −0.03

403
(Northeast Interior Basis)
n = 1
A = −1.99
B = 1.49

BC y = 0.76× + 0.97 0.94 0.85 0.83 0.67 0.01
HS y = 0.94× + 0.49 0.88 0.86 0.78 0.58 −0.28
ANN_all 0.93 0.93 0.57 0.39 0.15
ANN_T 0.9 0.89 0.7 0.51 −0.19
WA-ANN_all 0.77 0.77 1.01 0.75 −0.08
WA-ANN_T 0.75 0.74 1.09 0.78 0.02
LSTM_all 0.95 0.95 0.46 0.32 0.08
LSTM_T 0.9 0.89 0.69 0.51 −0.19
CNN_all 0.95 0.95 0.49 0.34 0.04
CNN_T 0.89 0.89 0.71 0.52 −0.12

404
(Central Coast Drainage)
n = 20
A = −1.86
B = 1.23

BC y = 0.88× + 0.62 0.87 0.84 0.66 0.51 −0.24
HS y = 1.01× + 0.16 0.84 0.83 0.68 0.52 −0.18
ANN_all 0.9 0.89 0.53 0.4 −0.13
ANN_T 0.87 0.87 0.59 0.45 −0.1
WA-ANN_all 0.7 0.68 0.92 0.69 0.22
WA-ANN_T 0.69 0.67 0.94 0.7 0.23
LSTM_all 0.92 0.92 0.46 0.33 −0.07
LSTM_T 0.88 0.88 0.58 0.42 −0.06
CNN_all 0.92 0.92 0.48 0.35 −0.04
CNN_T 0.87 0.87 0.59 0.44 −0.03

405
(San Joaquin Drainage)
n = 23
A = −1.98
B = 1.42

BC y = 0.77× + 0.54 0.96 0.83 0.95 0.7 0.5
HS y = 1.01× - 0.05 0.9 0.9 0.73 0.52 0.02
ANN_all 0.96 0.96 0.45 0.31 0.02
ANN_T 0.92 0.92 0.65 0.46 0.05
WA-ANN_all 0.86 0.86 0.85 0.61 −0.01
WA-ANN_T 0.85 0.85 0.88 0.64 −0.06
LSTM_all 0.97 0.97 0.38 0.26 0
LSTM_T 0.92 0.92 0.64 0.45 0.08
CNN_all 0.97 0.97 0.4 0.28 0
CNN_T 0.92 0.92 0.65 0.46 0.1

406
(South Coast Drainage)
n = 21
A = −1.93
B = 1.32

BC y = 0.82× + 0.57 0.85 0.81 0.72 0.55 0.09
HS y = 0.94× + 0.31 0.8 0.79 0.76 0.56 −0.08
ANN_all 0.88 0.88 0.56 0.4 −0.01
ANN_T 0.83 0.82 0.7 0.5 0.05
WA-ANN_all 0.64 0.64 1 0.76 −0.04
WA-ANN_T 0.63 0.62 1.01 0.76 0.01
LSTM_all 0.91 0.91 0.49 0.34 0.02
CNN_all 0.91 0.9 0.51 0.36 0.04
CNN_T 0.83 0.83 0.69 0.49 0.08

407
(Southeast Desert Basin)
n = 15
A = −2.10
B = 1.60

BC y = 0.72× + 0.64 0.92 0.58 1.47 1.15 0.99
HS y = 0.90× + 0.55 0.81 0.8 1.03 0.73 −0.06
ANN_all 0.95 0.94 0.54 0.33 0.13
WA-ANN_all 0.77 0.74 1.17 0.86 −0.44
WA-ANN_T 0.75 0.71 1.22 0.91 −0.46
LSTM_all 0.96 0.96 0.48 0.31 0.01
LSTM_T 0.86 0.86 0.86 0.6 −0.01
CNN_all 0.95 0.95 0.51 0.34 0.02
CNN_T 0.86 0.86 0.87 0.6 0

BC: Blaney & Criddle FAO, HS: Hargreaves & Samani, ANN_all: ANNmodel with Tmin, Tmax, Ta, Ra, RH, and U as inputs, WA-ANN_all: Wavelet transform ANNmodel with Tmin, Tmax, Ta, Ra,
RH, and U as inputs, ANN_T: ANNmodel with Tmin, Tmax, Ta, and Ra as inputs, WA-ANN_T: wavelet transform ANNmodel with Tmin, Tmax, Ta, and Ra as inputs, LSTM_all: Long Short-Term
Memory Recurrent Neural Networkwith 6 inputs, LSTM_T: 4 inputs, CNN_all: Convolutional neural networkwith 6 inputs, CNN_T: CNNwith 4 inputs, n: the number of CIMIS stations in
each climate division. A and B: coefficients of the BC model.
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Fig. 7. Variation in annual mean absolute error, MAE [mm d−1] values against meteorological variables - wind speed (U), relative humidity (RH), vapor pressure deficit (VPD), and global
solar radiation (Rs).
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ETo and RMSE of 1.0 mm d−1 for the HSmodel at CIMIS Station 6 in the
Sacramento drainage region. This is in close agreement with the results
of our study with RMSE of 0.87 mm d−1 and the underestimation
(MBE = −20 mm d−1) of ETo, as is also evident in Fig. 9. The BC
model (MAE: 0.47 to 1.15 mm d−1) performed relatively better in the
coastal regions, i.e., north coast drainage, central coast drainage, and
south coast drainage, where its performance was similar to the HS
model. This can also be observed in Fig. 9, where the mean ETo
estimated by the BC model is similar to the CIMIS ETo in the coastal
regions. NSE ranged from 0.58 (in the southeast desert basin) to 0.89
(in north coast drainage) for the BC model, and from 0.79 (in south
coast drainage) to 0.90 (in san joaquin drainage) for the HS model. R2

varied from 0.85 (in south coast drainage) to 0.96 (in San Joaquin drain-
age) for the BC model, and from 0.80 (in south coast drainage) to 0.90
(in san joaquin drainage).

The mean long-term CIMIS ETo ranged from 2.58 mm d−1 (at CIMIS
#193 in the central coast drainage) to 5.29mmd−1 (CIMIS # 200 in the
southeast desert basin) (Fig. 9). The mean ETo ranged from 2.05 to
6.91 mm d−1 for the temperature-based empirical models, with the
lowest (at CIMIS # 193 in central coast drainage) and highest (at
CIMIS # 200 in the southeast desert basin) observed for the BC model
(Fig. 9).

The ANNmodels can be ranked as ANN_all >ANN_T >WA-ANN_all
>WA-ANN_T, based on their performance in the climate divisions.MAE
ranged from 0.31 mm d-1 (ANN_all in the north-coast drainage) to
71
0.91 mm d-1 (WA-ANN_T in the southeast desert basin) for the ANN
models. The MBE values ranged from −0.46 mm d−1 (WA-ANN_T in
the southeast desert basin) to 0.30 mm d−1 (WA-ANN_T in the north
coast drainage). NSE ranged from 0.62 (WA-ANN_T in the south coast
drainage) to 0.96 (ANN_all in the San Joaquin drainage), and R2 values
varied from 0.63 (WA-ANN_T in the south coast drainage) to 0.96
(ANN_all in the San Joaquin drainage). The mean ETo values ranged
from 2.24 mm d−1 (at CIMIS #193 in the central coast drainage) to
5.42mmd−1 (CIMIS # 200 in the southeast desert basin) for themodels
ANN_T and ANN_all, respectively (Fig. 9). ANN_Tmodel, which used the
same inputs as the HS model, resulted in a reduction of MAE ranging
from 11% to 17% in all climate divisions, thus offering a promising alter-
native for accurate estimations of ETo.

Similarly, DL models can be ranked as LSTM_all > CNN_all >
LSTM_T > CNN_T, based on their performance in the climate divisions.
MAE ranged from 0.26 mm d−1 (LSTM_all in San Joaquin drainage) to
0.60 mm d−1 (CNN_T in the southeast desert basin). The MBE values
ranged from −0.19 mm d−1 (LSTM_T in the northeast interior basin)
to 0.16mmd−1 (CNN_T in north coast drainage). TheNSE and R2 values
varied from 0.83 (CNN_T in the South Coast drainage) to 0.97 (LSTM_all
in the San Joaquin drainage). Long-term mean ETo values ranged from
2.43 mm d−1 (at CIMIS #193 in central coast drainage) to 5.26 mm
d−1 (CIMIS # 200 in the southeast desert basin) observed for the
LSTM_all model (Fig. 9). The LSTM_T and CNN_T models, which used
the same inputs as the HSmodel, resulted in a reduction ofMAE ranging



Fig. 8. Variation in annual mean bias error, MBE [mm d−1] values againstmeteorological variables - wind speed (U), relative humidity (RH), vapor pressure deficit (VPD), and global solar
radiation (Rs). BC: Blaney& Criddle FAO, HS: Hargreaves& Samani, ANN_all: ANNmodelwith Tmin, Tmax, Ta, Ra, RH, andU as inputs,WA-ANN_all:Wavelet transformANNmodelwith Tmin,
Tmax, Ta, Ra, RH, and U as inputs, ANN_T: ANNmodel with Tmin, Tmax, Ta, and Ra as inputs, WA-ANN_T: wavelet transform ANNmodel with Tmin, Tmax, Ta, and Ra as inputs, LSTM_all: Long
Short-Term Memory Recurrent Neural Network with 6 inputs, LSTM_T: 4 inputs, CNN_all: Convolutional neural network with 6 inputs, CNN_T: CNN with 4 inputs.
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from 10% to 18% in all climate divisions, thus offering a promising alter-
native for accurate estimations of ETo using only temperature as input.

3.5. Validation

Table 6 shows the performance indices of the original/calibrated em-
pirical models and theDLmodels developed in this study. Sincewavelet
analysis ANN models resulted in the worst performance compared to
other DLmodels, thesemodels are excluded from the validation. Empir-
ical models calibrated using the coefficients presented in Tables 1 and 5
were evaluated at the validation sites. This analysis was performed to
indirectly account for the meteorological variables not used in the Har-
greaves equations, such as RH and U. Fig. 10 shows the box plots for the
models evaluated at the validation sites. We observed that the climate
division-specific calibration, HS(calcd) with MAE = 0.66 mm d−1,
performed slightly better than the original HS model (MAE =
0.68 mm d−1) which also concurs with the results from other studies
(Kukal et al., 2020; Senatore et al., 2020); however, theperformance im-
provement was not substantial in our study. The original BC model re-
quires information about relative humidity and wind speed as shown
in Eqs. 2 and 3. We obtained the average value of BC coefficients A and
B from 101 CIMIS stations and used these values to calculate BC(cal),
while the climate division-specific average was used to calculate BC
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(calcd). BC(calcd) with MAE = 0.86 mm d−1 resulted in comparable
performance to the original BC model (MAE = 0.81 mm d−1) for the
validation sites.

On the other hand, temperature-based DLmodels showed improved
performance with ANN_T (MAE = 0.57 mm d−1), LSTM_T (MAE =
0.54 mm d−1), and CNN_T (MAE = 0.56 mm d−1), resulting in a 15%,
20%, and 17% reduction in the MAE, respectively, compared to the HS
(calcd) model. The performance indices for the other DL models using
all weather inputs are also shown in Table 6. It is deduced that deep
learning models can help estimate ETo at a new location accurately.
Furthermore, including the temporal information as inputs, for
example, in LSTM and CNN-1D models, does not result in a substantial
improvement in performance compared to ANN models.

Readers should note that this paper only focused on ETo derived
from CIMIS stations because of its widespread use in irrigation schedul-
ing and availability in various climate conditions (Fig. 1).Meteorological
data, specifically temperature data, are available from the highly dense
network of stations from National Centers for Environmental Informa-
tion (NCEI) by the National Oceanic and Atmospheric Administration
(NOAA). However, most ETo equations are developed using data from
irrigated agriculture crops, and CIMIS measures meteorological vari-
ables in a “standardized condition” on a well-watered extended surface
of green grass. In contrast, public weather sites often lie adjacent to



Fig. 9. Comparison between the long-term ETo maps obtained from CIMIS against the estimated maps by the temperature-based empirical and DL models evaluated in this study. BC:
Blaney & Criddle FAO, HS: Hargreaves & Samani, ANN_all: ANN model with Tmin, Tmax, Ta, Ra, RH, and U as inputs, WA-ANN_all: Wavelet transform ANN model with Tmin, Tmax, Ta, Ra,
RH, and U as inputs, ANN_T: ANN model with Tmin, Tmax, Ta, and Ra as inputs, WA-ANN_T: wavelet transform ANN model with Tmin, Tmax, Ta, and Ra as inputs, LSTM_all: Long hort-
Term Memory Recurrent Neural Network with 6 inputs, LSTM_T: 4 inputs, CNN_all: Convolutional neural network with 6 inputs, CNN_T: CNN model with 4 inputs.
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asphalt, oiled or graveled lots, streets, roads, roofed structures, orwithin
non-irrigated, non-cultivated lands (Allen and Pruitt, 1986). This must
be considered since the choice of the ETo equation depends
significantly on the origin and the environmental conditions of its
development. Therefore, future work in regional/site-specific calibra-
tion of temperature-based empirical models using data from these sta-
tions might be helpful (Kukal et al., 2020; Long et al., 2013; Senatore
et al., 2020).

4. Conclusion

This study evaluated the performance of deep learning (DL) and two
empirical temperature-based ETo models at 101 active California
Irrigation Management Information System (CIMIS) weather stations
in California, using >725,000 observations from 1985 to 2019. The DL
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models outperformed the empirical equations and showed high gener-
alizability when evaluated on the independent sites. Our results suggest
that using raw input data for ANNmodels is better than using the recon-
structed signal obtained from the wavelet transform. Furthermore,
using information about the last 30 days alongwith the input, as imple-
mented in the DL models, surpassed other models in performance.

The Hargreaves & Samani model was the best performing empirical
model across the seasons, years, and climate divisions, and further per-
formance improvement can be achieved by using the climate division-
specific calibration provided in this study. Since CIMIS stations are
mainly located in arid/semi-arid regions in California, our models are
most reliable and recommended to be used in similar climate condi-
tions. Nevertheless, the study offers amethodology that can be followed
in other data-sparse regions. Considering the difficulty in collecting the
meteorological input parameters like wind speed and humidity,



Table 6
Performance statistics for the temperature-based ETo equations and deep learningmodels
for the 15 validation CIMIS stations.

Model Metric Mean std min max

BC RMSE 1.04 0.24 0.75 1.69
MAE 0.81 0.23 0.54 1.47
MBE −0.14 0.57 −1.35 0.67
NSE 0.75 0.11 0.48 0.89
R2 0.75 0.11 0.48 0.89

BC(cal) RMSE 1.20 0.27 0.92 1.76
MAE 0.96 0.21 0.75 1.44
MBE −0.37 0.55 −1.33 0.36
NSE 0.68 0.11 0.43 0.83
R2 0.68 0.11 0.43 0.83

BC(calcd) RMSE 1.09 0.16 0.88 1.39
MAE 0.86 0.12 0.72 1.07
MBE −0.27 0.38 −0.87 0.29
NSE 0.73 0.08 0.62 0.85
R2 0.73 0.08 0.62 0.85

HS RMSE 0.90 0.24 0.53 1.33
MAE 0.68 0.18 0.38 1.04
MBE −0.17 0.42 −0.87 0.47
NSE 0.81 0.10 0.64 0.94
R2 0.81 0.10 0.64 0.94

HS(cal) RMSE 0.89 0.22 0.53 1.28
MAE 0.67 0.16 0.38 0.97
MBE −0.10 0.42 −0.78 0.54
NSE 0.82 0.08 0.69 0.94
R2 0.82 0.08 0.69 0.94

HS(calcd) RMSE 0.88 0.22 0.53 1.27
MAE 0.66 0.15 0.39 0.90
MBE −0.12 0.37 −0.66 0.49
NSE 0.83 0.07 0.72 0.94
R2 0.83 0.07 0.72 0.94

ANN_all RMSE 0.51 0.07 0.39 0.64
MAE 0.35 0.07 0.27 0.52
MBE 0.03 0.15 −0.34 0.21
NSE 0.93 0.04 0.83 0.97
R2 0.93 0.04 0.83 0.97

ANN_T RMSE 0.79 0.20 0.51 1.20
MAE 0.57 0.16 0.33 0.91
MBE −0.14 0.38 −0.70 0.48
NSE 0.86 0.07 0.74 0.95
R2 0.86 0.07 0.74 0.95

LSTM_all RMSE 0.44 0.08 0.32 0.59
MAE 0.30 0.05 0.25 0.42
MBE 0.00 0.11 −0.26 0.16
NSE 0.95 0.03 0.86 0.98
R2 0.95 0.03 0.86 0.98

LSTM_T RMSE 0.74 0.15 0.58 1.07
MAE 0.54 0.11 0.38 0.79
MBE −0.08 0.34 −0.58 0.51
NSE 0.87 0.05 0.78 0.93
R2 0.87 0.05 0.78 0.93

CNN_all RMSE 0.47 0.05 0.39 0.58
MAE 0.35 0.04 0.31 0.45
MBE −0.06 0.10 −0.26 0.13
NSE 0.95 0.03 0.89 0.97
R2 0.95 0.03 0.89 0.97

CNN_T RMSE 0.77 0.16 0.60 1.12
MAE 0.56 0.12 0.41 0.82
MBE −0.03 0.36 −0.55 0.58
NSE 0.87 0.05 0.78 0.93
R2 0.87 0.05 0.78 0.93

(cal) and (calcd) represents Calibrated and Climate Division specific calibrated models,
respectively.

Fig. 10. Boxplot of the root mean squared error (RMSE) observed at 15 validation sites for
each model. BC: Blaney & Criddle FAO, HS: Hargreaves & Samani, (cal) and (calcd)
represents Calibrated and Climate Division specific calibrated models, respectively.
ANN_all: ANN model with Tmin, Tmax, Ta, Ra, RH, and U as inputs, WA-ANN_all: Wavelet
transform ANN model with Tmin, Tmax, Ta, Ra, RH, and U as inputs, ANN_T: ANN model
with Tmin, Tmax, Ta, and Ra as inputs, WA-ANN_T: wavelet transform ANN model with
Tmin, Tmax, Ta, and Ra as inputs, LSTM_all: Long short-Term Memory Recurrent Neural
Network with 6 inputs, LSTM_T: 4 inputs, CNN_all: Convolutional neural network with 6
inputs, CNN_T: CNN model with 4 inputs.
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calibrated Hargreaves & Samani, ANN_T, LSTM_T, and CNN_T models
that we developed in this study can be adopted for accurate estimations
of ETo across California. Extraterrestrial solar radiation (Ra), another
input in the temperature-based models, can be calculated based on
location and time of the year following the equations given by Allen
et al. (1998). Thus, these models only require on-site air temperature
measurements as inputs.

The results of this study and the calibration information can be used
for water resourcemanagement and irrigation scheduling by irrigation/
74
agricultural experts for reliable ETo estimations using temperature-
based methods. More specifically, DL methods have the potential to be
deployed in various smart irrigation controllers that collect on-site
temperature information for the estimation of ETo. The DL models de-
veloped in this study can be accessed at http://www.ucrwater.com/
software-and-tools.html as a webapp named deepET.
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